Abstract
Automatic Text Summarization (ATS) is one of the utilizations of technological sophistication in terms of text processing assisting humans in producing a summary or key points of a document in large quantities. We use Indonesian language as objects because there are few resources in NLP research using Indonesian language. This paper utilized PLTMs (Pre-Trained Language Models) from the transformer architecture, namely T5 (Text-to-Text Transfer Transformer) which has been completed previously with a larger dataset. Evaluation in this study was measured through comparison of the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) calculation results between the reference summary and the model summary. The experiments with the pre-trained t5-base model with fine tuning parameters of 220M for the Indonesian news dataset yielded relatively high ROUGE values, namely ROUGE-1 = 0.68, ROUGE-2 = 0.61, and ROUGE-L = 0.65. The evaluation value worked well, but the resulting model has not achieved satisfactory results because in terms of abstraction, the model did not work optimally. We also found several errors in the reference summary in the dataset used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.