Abstract
Query auto completion (QAC) is used in search interfaces to interactively offer a list of suggestions to users as they enter queries. The suggested completions are updated each time the user modifies their partial query, as they either add further keystrokes or interact directly with completions that have been offered. In this work we use a state model to capture the possible interactions that can occur in a QAC environment. Using this model, we show how an abstract QAC log can be derived from a sequence of QAC interactions; this log does not contain the actual characters entered, but records only the sequence of types of interaction, thus preserving user anonymity with extremely high confidence. To validate the usefulness of the approach, we use a large scale abstract QAC log collected from a popular commercial search engine to demonstrate how previous and new knowledge about QAC behavior can be inferred without knowledge of the queries being entered. An interaction model is then derived from this log to demonstrate its validity, and we report observations on user behavior with QAC systems based on the interaction model that is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.