Abstract

We shall propose a conceptual-oriented discussion of the so-called Univalent Foundations Program, that is, of Martin-Löf type theory enriched with a homotopic interpretation, together with the univalence axiom proposed by Voevodsky. We shall argue that the type-theoretic notion of propositional equality encodes the notion of indiscernibility, we shall address the homotopic interpretation of Martin-Löf type theory, and we shall analyse whether Leibniz's principle of the identity of indiscernibles holds or not in Univalent Foundations. We shall finally argue that univalence can be understood as a particular implementation of a constructive notion of abstraction that resolves Fregean abstraction. This article is part of the theme issue 'Identity, individuality and indistinguishability in physics and mathematics'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.