Abstract

The ability to solve problems is a critical skill in all undergraduate engineering curricula. Students' capacity for problem solving is complicated by the fact that higher level reasoning skills, including the capacity for abstraction, are not innate in a person until the mid-twenties or later. The results of an exploratory study that looked at students' episodes of reasoning when solving problems in a sophomore level electrical circuits course are presented. Students' problem solving attempts are analyzed using the representation mapping framework developed by Hahn and Chater that is based on store representations of knowledge and how they are applied. This framework distinguishes between similarity and rules-based cognitive processes, and accounts for memory-bank, rules-based, similarity-based and prototype types of reasoning. Students were asked to think aloud when solving specific problems selected by the course instructor. The interviews were recorded, transcribed, and analyzed in detail to identify the types of reasoning and the degree of abstraction in the students' problem solving attempts. This study demonstrated that representation mapping is useful framework for studying students' problem solving skills in electrical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call