Abstract

Despite many advances that enable the application of model checking techniques to the verification of large systems, the state-explosion problem remains the main challenge for scalability. Compositional verification addresses this challenge by decomposing the verification of a large system into the verification of its components. Recent techniques use learning-based approaches to automate compositional verification based on the assume-guarantee style reasoning. However, these techniques are only applicable to finite-state systems. In this work, we propose a new framework that interleaves abstraction and learning to perform automated compositional verification of infinite-state systems. We also discuss the role of learning and abstraction in the related context of interface generation for infinite-state components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.