Abstract
Modern programming languages have effects and mix multiple calling conventions, and their core calculi should too. We characterize calling conventions by their “substitution discipline” that says what variables stand for, and design calculi for mixing disciplines in a single program. Building on variations of the reducibility candidates method, including biorthogonality and symmetric candidates which are both specialized for one discipline, we develop a single uniform framework for strong normalization encompassing call-by-name, call-by-value, call-by-need, call-by-push-value, non-deterministic disciplines, and any others satisfying some simple criteria. We explicate commonalities of previous methods and show they are special cases of the uniform framework and they extend to multi-discipline programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Logical and Algebraic Methods in Programming
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.