Abstract

Introduction: Optical coherence tomography (OCT) has played an important role in the diagnosis and treatment guidance in coronary artery disease. However, existing OCT systems are not suitable for routine neurovascular applications due to the size and tortuosity of the arteries. Hypothesis: We seek to demonstrate a prototype high-frequency OCT (HF-OCT) capable of high-resolution imaging in simulated cerebrovascular anatomy. Methods: A low-profile HF-OCT system was constructed with an image resolution approaching 10μm. Using an in vitro, patient-specific model of the circle of Willis with circulating porcine blood, we characterized the delivery of the device and ability to image in a tortuous path. Also, human cadaver intracranial atherosclerosis plaques were imaged with HF-OCT and assessed by an expert imager. Finally, neurovascular devices were implanted in 8 pigs (Fig 1) and HF-OCT imaging was compared with gold-standard DSA and CT. Results: In the phantom, optimal blood clearance was achieved through an intermediate catheter (5 Fr Navien) with infusion of contrast at 5 ml/s in the internal carotid and basilar artery, and 3 ml/sec in the MCA. The in vivo study demonstrated that both malapposition of devices or thrombus formation along the device surface could be reliably diagnosed among 3 reviewers (Fleiss’s kappa of 0.87 and 0.9, respectively). This agreement was superior to DSA and CT. Imaging in tortuous swine brachial showed in all cases imaging free of artifacts, uniform illumination and ability to visualize vessel wall layers. Plaque types including ‘lipid pools’, fibrotic, and calcific tissue from cadaver specimens of ICAD could be adequately depicted by HF-OCT. Conclusion: In vitro, in vivo and ex vivo characterization of a novel HF-OCT device has shown it is capable of imaging in the tortuous intracranial vascular anatomy. This technology has to potential to aid in the diagnosis of cerebrovascular disease and guide optimal endovascular treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call