Abstract

We discuss the unitary equivalence of generators $G_{A,R}$ associated with abstract damped wave equations of the type $\ddot{u} + R \dot{u} + A^*A u = 0$ in some Hilbert space $\mathcal{H}_1$ and certain non-self-adjoint Dirac-type operators $Q_{A,R}$ (away from the nullspace of the latter) in $\mathcal{H}_1 \oplus \mathcal{H}_2$. The operator $Q_{A,R}$ represents a non-self-adjoint perturbation of a supersymmetric self-adjoint Dirac-type operator. Special emphasis is devoted to the case where 0 belongs to the continuous spectrum of $A^*A$. In addition to the unitary equivalence results concerning $G_{A,R}$ and $Q_{A,R}$, we provide a detailed study of the domain of the generator $G_{A,R}$, consider spectral properties of the underlying quadratic operator pencil $M(z) = |A|^2 - iz R - z^2 I_{\mathcal{H}_1}$, $z\in\mathbb{C}$, derive a family of conserved quantities for abstract wave equations in the absence of damping, and prove equipartition of energy for supersymmetric self-adjoint Dirac-type operators. The special example where $R$ represents an appropriate function of $|A|$ is treated in depth and the semigroup growth bound for this example is explicitly computed and shown to coincide with the corresponding spectral bound for the underlying generator and also with that of the corresponding Dirac-type operator. The cases of undamped (R=0) and damped ($R \neq 0$) abstract wave equations as well as the cases $A^* A \geq \epsilon I_{\mathcal{H}_1}$ for some $\epsilon > 0$ and $0 \in \sigma (A^* A)$ (but 0 not an eigenvalue of $A^*A$) are separately studied in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.