Abstract

Objectives: Treatment approaches for stroke include reperfusion therapies (i.e., recombinant tissue plasminogen activator, endovascular thrombectomy); however, many stroke patients still experience disability. This indicates a need to develop neuroprotective treatments that are effective in the setting of successful recanalization. Post-stroke outcomes are improved by treatment with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (i.e., statins). We have shown that the endogenous blood-brain barrier (BBB) uptake transporter Oatp1a4 facilitates blood-to-brain transport of atorvastatin (ATV). The objective of this study was to show that Oatp-mediated transport at the BBB is an absolute requirement for ATV neuroprotective effectiveness in stroke. Methods: Male and female Sprague-Dawley rats (200-250 g) were subjected to transient middle cerebral artery occlusion (tMCAO) for 90 minutes followed by 22.5 h reperfusion. Sham-operated animals were used as controls. ATV (20 mg/kg, i.v.) was injected 2 h following reperfusion. The role of Oatp-mediated transport was determined using the Oatp transport inhibitor fexofenadine (FEX; 3.2 mg/kg, i.v.) injected at the same time as ATV. Following tMCAO, infarction volume and brain edema ratios were calculated from TTC-stained brain slices. Post-stroke outcomes were assessed via measurement of neurological deficit scores, by the adhesive removal test (i.e., sensorimotor function), and by the rotarod performance test (i.e., motor function). Results: In tMCAO animals, ATV reduced (p < 0.01) both infarction volume and brain edema ratio in both sexes. ATV improved neurological deficit scores and well as sensorimotor function and motor performance. In the presence of FEX, ATV had no effect on infarction volume or brain edema ratio. Similarly, positive effects of ATV on post-stroke outcomes were attenuated by FEX. Conclusions: Our data indicate that pharmacological inhibition of Oatp-mediated transport at the BBB prevents ATV from exerting neuroprotective effects in rats following tMCAO. Our results also suggest that i.v. ATV administered at an early time point following reperfusion (i.e., 2 h) can provide effective neuroprotection in male and female rats subjected to tMCAO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.