Abstract
Abstract The majority of cancer-associated deaths result from distant organ metastasis, yet the mechanisms that enable this process remain poorly understood. For most solid tumors, colonization of regional or distant lymph nodes (LNs) typically precedes the formation of distant organ metastases, yet it remains unclear whether LN metastasis plays a functional role in disease progression. LNs are major sites of anti-tumor lymphocyte education, including in the context of immunotherapy, yet LN metastasis frequently correlates with further disease progression. Here, we find that LN metastasis represents a critical step in tumor progression through the capacity of such metastases to induce tumor-specific immune tolerance in a manner that promotes further dissemination of tumors to distant organs. Using an in vivo passaging approach of a non-metastatic syngeneic melanoma, we generated 300 unique cell lines exhibiting varying degrees of LN metastatic capacity. We show that the presence of these LN metastases enables distant organ seeding of metastases in a manner that the parental tumor cannot, and this effect is eliminated in mice lacking an adaptive immune response. Furthermore, this promotion of distant seeding by LN metastases is tumor specific. Using flow cytometry and single-cell sequencing to perform organism-wide immune profiling, we identify multiple cellular mediators of tolerance. In particular, we find that LN metastases have the capacity to both resist NK cell cytotoxicity and induce regulatory T cells (Tregs) in vitro. Furthermore, depletion of NK cells in vivo enables non-metastatic tumors to disseminate to LNs, and ablation of Tregs using FoxP3-DTR mice eliminates the occurrence of lymphatic metastases. Adoptive transfer of Tregs from the LNs of mice bearing LN metastasis to naïve mice facilitates metastasis in a manner that Tregs from mice without LN metastases cannot, and we find that these Tregs are induced in an antigen-specific manner. Using genetic mouse models and photoconvertible tracking technologies, we show that Tregs induced within involved LNs preferentially traffic to distant sites compared to other CD4 populations. Through the use of whole exome sequencing, we show that neither the metastatic proclivity nor immunosuppression evolve through the acquisition of driver mutations, loss of neoantigens, loss of MHC class I presentation, or decreases in melanoma antigen expression. Rather, by RNA-seq and ATAC-seq, we show that a conserved interferon signaling axis is upregulated in LN metastases and is rendered stable through epigenetic regulation of chromatin accessibility. Furthermore, using CRISPR/Cas9, we find that these pathways are required for LN metastatic seeding, and validate their conserved significance in additional mouse models of pancreatic ductal adenocarcinoma and head and neck squamous cell carcinoma (HNSCC), along with RNA-seq analysis of malignant populations sorted from HNSCC patients. Together, these findings demonstrate a critical role for LN metastasis in promoting tumor-specific immunosuppression. This abstract is also being presented as Poster P020. Citation Format: Nathan E. Reticker-Flynn, Weiruo Zhang, Julia A. Belk, Andrew J. Gentles, Ansuman Satpathy, Sylvia K. Plevritis, Edgar G. Engleman. Lymph node colonization promotes distant tumor metastasis through the induction of tumor-specific immune tolerance [abstract]. In: Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; 2021 Oct 5-6. Philadelphia (PA): AACR; Cancer Immunol Res 2022;10(1 Suppl):Abstract nr PR05.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.