Abstract

Abstract The human fallopian tube harbors the cell-of-origin for the majority of high-grade serous ‘ovarian’ cancers (HGSCs), but its cellular composition, particularly the epithelial component, is poorly characterized. We performed single-cell transcriptomic profiling in 12 primary fallopian specimens from 8 patients, analyzing around 53,000 individual cells to map the major immune, fibroblastic and epithelial cell types present in this organ. We identified 10 epithelial sub-populations, characterized by diverse transcriptional programs including SOX17 (enriched in secretory epithelial cells), TTF3 and RFX3 (enriched in ciliated cells) and NR2F2 (enriched in early, partially differentiated secretory cells). Based on transcriptional signatures, we reconstructed a trajectory whereby secretory cells differentiate into ciliated cells via a RUNX3high intermediate. Computational deconvolution of the cellular composition of advanced HGSCs based on epithelial subset signatures identified the ‘early secretory’ population as a likely precursor state for the majority of HGSCs. The signature of this rare population of cells comprised both epithelial (EPCAM, KRT) and mesenchymal (THY1, ACTA2) features, and was enriched in mesenchymal-type HGSCs, a group known to have particularly poor prognoses. This cellular and molecular compendium of the human fallopian tube in cancer-free women is expected to advance our understanding of the earliest stages of fallopian epithelial neoplasia. Further computational analyses on fibroblast and immune cells together with tumor single-cell data reveals extended contribution of non-epithelial microenvironment and cell-cell interactions and communications in fallopian tube that potentially drive HGSC progression. Citation Format: Huy Q. Dinh, Xianzhi Lin, Forough Abbasi, Robbin Nameki, Marcela Haro, Claire Olingy, Heidi Chang, Lourdes Hernandez, Simon Gayther, Kelly N. Wright, Paul-Joseph Aspuria, Beth Karlan, Rosario I. Corona, Andrew Li, B.J. Rimel, Matthew Siedhoff, Fabiola Medeiros, Kate Lawrenson. Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube [abstract]. In: Proceedings of the AACR Virtual Special Conference on the Evolving Tumor Microenvironment in Cancer Progression: Mechanisms and Emerging Therapeutic Opportunities; in association with the Tumor Microenvironment (TME) Working Group; 2021 Jan 11-12. Philadelphia (PA): AACR; Cancer Res 2021;81(5 Suppl):Abstract nr PO023.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.