Abstract
AbstractExisting stroke‐based painting synthesis methods usually fail to achieve good results with limited strokes because these methods use semantically irrelevant metrics to calculate the similarity between the painting and photo domains. Hence, it is hard to see meaningful semantical information from the painting. This paper proposes a painting synthesis method that uses a CLIP (Contrastive‐Language‐Image‐Pretraining) model to build a semantically‐aware metric so that the cross‐domain semantic similarity is explicitly involved. To ensure the convergence of the objective function, we design a new strategy called decremental optimization. Specifically, we define painting as a set of strokes and use a neural renderer to obtain a rasterized painting by optimizing the stroke control parameters through a CLIP‐based loss. The optimization process is initialized with an excessive number of brush strokes, and the number of strokes is then gradually reduced to generate paintings of varying levels of abstraction. Experiments show that our method can obtain vivid paintings, and the results are better than the comparison stroke‐based painting synthesis methods when the number of strokes is limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.