Abstract

Introduction: Post-stroke cognitive impairment (PSCI) is a major contributor to long-term disability following acute ischemic stroke. Learning and memory deficits are a common feature of PSCI and alterations in hippocampal function are a likely contributor. Interestingly, common experimental stroke models (middle cerebral artery occlusion; MCAO) cause hippocampal dysfunction, despite no direct ischemic insult to the hippocampus, suggesting perturbations in neural circuits. Thus, we utilize electrophysiological recordings of hippocampal plasticity in combination with neurobehavioral assessments of memory function. Hypothesis: Activated astrocytes in the hippocampus following MCAO increase expression of the surface enzyme CD38, which signals to neurons to impair plasticity. Methods: Extracellular field recordings of CA1 neurons were performed in acute hippocampal slices prepared 30 days after recovery from transient MCAO (60 min) in adult (6-8 week) mice. A behavioral fear conditioning paradigm (CFC) was used to evaluate contextual memory. Immunohistochemistry was performed to assess CD38 expression and slices were treated with CD38 inhibitors (78c) to assess plasticity. Results: Recordings obtained in brain slices 30 days after MCAO exhibited loss of hippocampal LTP; 134±6%, n=4 in sham and 107±12%, n=4 30 days after MCAO. Memory function, measured using CFC, was consistent with our LTP findings. MCAO decreased freezing behavior, indicating lack of memory (65±7% in sham mice (n=6) and 37±7% in MCAO mice, n=7). Immunohistochemical data indicates increased CD38 expression in activated astrocytes following MCAO in the hippocampus. Treatment of hippocampal slices with 78c, a potent CD38 inhibitor, after MCAO rescues LTP impairment. Finally, no additive increase in LTP when 78c is co-administered with a TRPM2 channel inhibitor was observed. Conclusion: These data indicate that MCAO is a reproducible model of post-stroke memory dysfunction (PSCI) and remote astrogliosis in the uninjured hippocampus may contribute to altered neuronal function (plasticity). Our data implicates increased levels of CD38 as an upstream activator of neuronal TRPM2 channel in the hippocampus following stroke, resulting in impaired synaptic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call