Abstract

Abstract BACKGROUND: Nearly 50% of patients with triple negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NACT) retain residual tumors resulting in high rates of metastatic relapse and poor overall survival. Residual tumors surviving NACT (Adriamycin plus cyclophosphamide; AC) were found to undergo a metabolic transition to heightened mitochondrial oxidative phosphorylation (oxphos; PMID: 30996079). Pharmacologic inhibition of mitochondrial electron transport chain (ETC) complex I with IACS-010759 (PMID: 29892070) had enhanced efficacy in residual, rather than treatment-naïve, tumors of orthotopic patient-derived xenograft (PDX) models. Our analyses of mitochondrial structure and function in human TNBC cell lines revealed differing adaptations in residual cells surviving treatment with conventional NACT agents. While DNA-damaging chemotherapies (e.g.Adriamycin, carboplatin) induced mitochondrial fusion and oxphos, taxanes (e.g.paclitaxel, docetaxel) induced mitochondrial fragmentation and reduced oxphos (Baek et al., Biorxiv Doi 10.1101/2022.02.25.481996). The mechanistic basis of these mitochondrial adaptations is not yet understood. The mitochondrial ETC consists of 92 proteins, 13 of which are encoded in the mitochondrial genome (mtDNA) and translated by the mitoribosome, while the remaining are encoded by the nuclear genome (nDNA), translated by the cytoribosome, and inserted into the inner mitochondrial membrane by accessory proteins, namely Oxidase (Cytochrome C) Assembly 1-Like (OXA1L). Disruption of OXA1L in mammalian cells has been shown to affect the levels and activity of ETC complexes I, III, IV, and V, and thus diminish oxphos. We aim to determine whether mitochondrial translation and OXA1L activity represent therapeutic vulnerabilities to overcome pro-survival metabolic adaptations in chemoresistant TNBC thereby augmenting treatment response. METHODS: Weare evaluating the effects of conventional TNBC chemotherapies singly, and in standard combinations, on mitochondrial translation and ETC formation in human TNBC cells and PDX models(PIM001-P, WHIM14, BCM15116) using metabolomic and proteomic profiling. To perturb these processes genetically, we knocked down (KD) OXA1Lwith siRNA. We are complementing these studies pharmacologically using conventional antibiotics, such as tigecycline, as previous studies showed they inhibit mitochondrial translation in breast and other cancers (PMID: 25625193). These studies will reveal whether OXA1L and mitochondrial translation are required for metabolic adaption and chemotherapy resistance of residual TNBC cells. PDX preclinical trials based on our published residual tumor testing schema (PMID: 30996079), will reveal whether the sequential combination of NACT followed by tigecycline can effectively perturb residual tumor relapse. RESULTS: Proteomic profiling of longitudinally harvested PDX tumors demonstrates substantial disruption of mitochondria-and nuclear-encoded ETC components in residual vs. treatment-naïve tumors. Interestingly, these patterns are distinct between different chemotherapy treatments, with an increase of ETC components in carboplatin-treated residual tumors compared to a decrease in docetaxel-treated residual tumors. Western blot analyses of human cell lines show OXA1LKD perturbs levels of both nuclear-and mitochondria-encoded ETC components. Preliminary findings suggest OXA1LKD increases sensitivity to chemotherapies in human TNBC cell lines. Finally, tigecycline effectively inhibits TNBC cell growth. We next will evaluate whether residual cells not killed by conventional chemotherapies have enhanced tigecycline susceptibility. CONCLUSION: These data suggest targeting mitochondrial translation may be a promising approach to overcome pro-survival metabolic adaptations in residual TNBC cells not killed by conventional chemotherapies. Citation Format: Mariah J. Berner, Lily Baek, Junegoo Lee, Philip L. Lorenzi, Mei Leng, Alexander B. Saltzman, Anna Malovannaya, Lacey E. Dobrolecki, Christina Sallas, Michael T. Lewis, Gloria V. Echeverria. Investigating the role of mitochondrial protein translation in the metabolic adaptation of chemoresistant triple negative breast cancer [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P6-11-10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call