Abstract
Abstract PURPOSE Triple negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer. Pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) predicts better survival. Early prediction of the treatment response can potentially triage non-responding patients to alternative protocol treatments, spare them of the unneeded toxicity, and improve pCR. We evaluated the ability of radiomic textural analysis of intratumoral and peritumoral regions on the dynamic contrast enhanced (DCE) and diffusion-weighted imaging (DWI) MRI images obtained early during NAST to predict pCR. MATERIALS AND METHODS This IRB-approved prospective study (NCT02276443) included 182 patients with biopsy proven stage I-III TNBC who had multiparametric MRIs at baseline (BL), post 2 cycles (C2), and post 4 cycles (C4) of NAST before surgery. Tumors and peritumoral regions of 5 mm and 10 mm in thickness were segmented on the 2.5 minutes DCE subtraction images and on the b=800 DWI images. Ten histogram-based first order texture features including mean, minimum, maximum, standard deviation, kurtosis, skewness, 1st, 5th, 95th, and 99th percentile, and 300 radiomic Grey Level Co-occurrence matrix (GLCM) features along with their absolute and relative differences between the 3 imaging time points were extracted from the tumors and from the peritumoral regions with an in-house Matlab toolbox. Treatment response at surgery (pCR vs non-pCR) was documented. The samples were divided into training and testing datasets by a 2:1 ratio. Area under the receiver operating characteristics curve (AUC ROC) was calculated for univariate analysis in predicting pCR. Logistic regression with elastic net regularization was performed for texture feature selection. Parameter optimization was performed by using 5-fold cross-validation based on mean cross-validated AUC in the training set. RESULTS Of 182 TNBC patients, 88 (48%) had pCR and 94 (52%) did not achieve pCR. Eight multivariate models combining radiomic features from both DCE and DWI tumoral and peritumoral regions had AUC > 0.8 (0.807-0.831) with p-value < 0.001 in both training and testing sets. The highest AUC=0.831 was obtained from a model consisting of 15 radiomic features: tumor DWI (5 GLCM features) at C2, peritumoral region on DCE (skewness) at C2, tumor DCE (1st, 5th percentile) at C4, tumor DWI (3 GLCM features) at C4, peritumoral region DWI (1 GLCM feature) at C4, and the relative difference between C4/C2 on DCE (5th, 95th percentile and mean). CONCLUSION Multi-parametric MRI-based radiomics models from the tumor and the peritumoral regions showed high accuracy as potential early predictors of NAST response in TNBC patients. Citation Format: Rania M. Mohamed, Bikash Panthi, Beatriz Adrada, Rosalind Candelaria, Mary S. Guirguis, Wei Yang, Medine Boge, Miral Patel, Nabil Elshafeey, Sanaz Pashapoor, Zijian Zhou, Jong Bum Son, Ken-Pin Hwang, H. T. Carisa Le-Petross, Jessica Leung, Marion E. Scoggins, Gary J. Whitman, Zhan Xu, Deanna L. Lane, Tanya Moseley, Frances Perez, Jason White, Elizabeth Ravenberg, Alyson Clayborn, Mark Pagel, Huiqin Chen, Jia Sun, Peng Wei, Alastair M. Thompson, Stacy Moulder, Anil Korkut, Lei Huo, Kelly K. Hunt, Jennifer K. Litton, Vicente Valero, Debu Tripathy, Clinton Yam, Jingfei Ma, Gaiane Rauch. Multi-Parametric MRI-Based Radiomics Models from Tumor and Peritumoral Regions as Potential Predictors of Treatment Response to Neoadjuvant Systemic Therapy in Triple Negative Breast Cancer Patients [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P6-01-06.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.