Abstract

In response to myocardial infarction (MI), quiescent cardiac fibroblasts differentiate into myofibroblasts mediating tissue repair in the infarcted area. One of the most widely accepted markers of myofibroblast differentiation is the expression of Acta2 which encodes smooth muscle alpha-actin (SMαA) that is assembled into stress fibers. However, the requirement of Acta2 / SMαA in the myofibroblast differentiation of cardiac fibroblasts and its role in post-MI cardiac repair remained largely unknown. To answer these questions, we generated a tamoxifen-inducible cardiac fibroblast-specific Acta2 knockout mouse line. Surprisingly, mice that lacked Acta2 in cardiac fibroblasts had a normal survival rate after MI. Moreover, Acta2 deletion did not affect the function or overall histology of infarcted hearts. No difference was detected in the proliferation, migration, or contractility between WT and Acta2 -null cardiac myofibroblasts. It was identified that Acta2 -null cardiac myofibroblasts had a normal total filamentous actin level and total actin level. Acta2 deletion caused a unique compensatory increase in the transcription level of Actg2 and an increase in the protein level of sarcomeric actin isoform(s). In addition, the specific muscle actin isoforms that were upregulated in Acta2 -null cardiac myofibroblasts varied between individual cells. Moreover, the formation of stress fibers by cytoplasmic actin isoforms, especially the cytoplasmic gamma-actin, was enhanced in Acta2 -null cardiac myofibroblasts despite their unchanged RNA and protein expression. In conclusion, the deletion of Acta2 does not prevent the myofibroblast differentiation of cardiac fibroblasts or affect the post-MI cardiac repair, and the increased expression and stress fiber formation of non-SMαA actin isoforms and the functional redundancy between actin isoforms are able to compensate for the loss of Acta2 in cardiac myofibroblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.