Abstract

Myocardial fibrosis promotes heart failure (HF) progression by impairing myocardial compliance, but also may predispose to myocardial calcification, further impairing cardiac function. Transition of resident cardiac fibroblast (CF) to pro-fibrotic myofibroblasts (MF) and osteogenic cell fates (OF) are key events which are partially controlled by microRNAs (miRs). To discover novel miRs involved in myocardial fibrosis and calcification, we compared online-available microarray datasets of left ventricles (LV) from failing human and mouse hearts. Assessing differentially-expressed miRs known to regulate fibrosis and calcification genes revealed that miR-129-5p is significantly downregulated in HF LV. Bioinformatic target analysis revealed small leucin-rich proteoglycan Asporin (Aspn) and SRY-Box Transcription Factor 9 (Sox9) as two novel miR-129-5p targets upregulated in both mouse and human diseased LV. Thus far, nothing is known about miR-129-5p in cardiac fibrosis and calcification. Additionally, the role of Asporin in myocardial fibrosis and the roles of either Asporin or Sox9 in myocardial calcification remain undiscovered. We show that miR-129-5p is expressed in CF in mouse and human hearts and is downregulated in CF of both HF patients and Angiotensin II (AngII)-injured mice, while Asporin and Sox9 are upregulated in CF of HF LV. In vitro , AngII or transforming growth factor-β downregulated miR-129-5p expression in primary adult mouse CF. Overexpression of miR-129-5p in CF inhibited expression of MF and OF transition markers, reduced migration, collagen production and calcium deposition. We validated Asporin and Sox9 as direct targets of miR-129-5p. Accordingly, silencing of Asporin and Sox9 in CF attenuated molecular and functional characteristics of MF and OF transition. Strikingly, systemic delivery of miR-129-5p mimics in mice directly targets CF and is sufficient to rescue preexisting AngII-induced myocardial fibrosis, calcification, diastolic- and systolic dysfunction. In conclusion, miR-129-5p rescues myocardial fibrosis and calcification by attenuating MF and OF transition via inhibition of Asporin and Sox9 in CF and is a promising therapeutic target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.