Abstract

Background: Heart failure is the one of the leading causes of death in HIV patients. Application ofantiretroviral therapy (ART) raise the life expectancy of HIV patients, but survival population show higherrisk of cardiovascular disorder. The aim of this study is to understand the underlying molecular mechanismof antiretroviral drugs (ARVs) induced cardiac dysfunction in HIV patients. Method and Results: To determine the mechanism of ARVs induced cardiac dysfunction, we performeda global transcriptomic profiling in primary cardiomyocytes treated with ARVs. Differentially expressedgenes were identified by DESeq2. Functional enrichment analysis of differentially expressed genes wereperformed using clusterProfiler R and ingenuity pathway analysis. Our data show that ARVs treatmentcauses upregulation of several biological function associated with cardiotoxicity and heart failure.Interestingly, we found that ARV drugs treatment significantly upregulates the expression of a set of genesinvolved cardiac enlargement and hypertrophy in the heart. Global gene expression data were validated inthe cardiac tissue isolated from the HIV patients having history of ART treatment. Interestingly, we foundthat the homeodomain-containing only protein homeobox (HOPX) expression was significantly increasedin transcriptional and translational level in cardiomyocytes treated with ARV drugs as well as in heart tissueof ART treated HIV patients. Further, we performed adenovirus mediated gain in and siRNA mediatedknockdown approach to determine the role of HOPX in ARVs mediated cardiac hypertrophy and epigeneticmodifications. Mechanistically, we found that HOPX expression level plays a key role in ARV drugsmediated increased cardiomyocytes cell size and reduced acetylation level of histone 3 at lysine 9 and lysine27. Furthermore, we found that knockdown of HOPX gene expression blunted the hypertrophy effect ofARV drugs in cardiomyocytes. It is known that HOPX reduces cellular acetylation level through interactionwith HDAC2. In our study, we found that histone deacetylase inhibitor Trichostatin A can restore cellularacetylation level in presence of ARVs. Conclusion: ART treatment causes cardiotoxicity through regulation of fatal gene expression incardiomyocytes and in adult heart. Additionally, we found that HOPX expression is critical in ARVsmediated cardiomyocytes remodeling and epigenetic modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call