Abstract

Familial dilated cardiomyopathy (DCM) is a leading cause of both adult and pediatric heart failure. Currently, there is no cure for DCM, and the 5-year transplant free survival rate is <50%. There is therefore an outstanding need to develop new therapeutics. Prior studies have established a strong genetic basis for DCM and identified causative genetic mutations. These observations provide unique opportunities to apply precision medicine approaches that target and circumvent the effects of deleterious mutations. Here, we used a multiscale approach to study the consequences of a human mutation in troponin T that causes DCM, ΔK210. We found that at the molecular scale ΔK210 changes the positioning of tropomyosin along the thin filament, leading to molecular hypocontractility. Using genome edited human stem cell derived cardiomyocytes heterozygous for the mutation, we show reduced cellular contractility at the single cell and tissue levels. Importantly, we demonstrate that mutant tissues show a reduced Frank-Starling response, increased stiffness, and misaligned myocytes. Based on our molecular mechanism, we hypothesized that treatment of ΔK210 with Omecamtiv Mecarbil (OM), a thin filament activator in clinical trials for heart failure, would improve the function of mutant tissues. We found that treatment of ΔK210 molecular complexes and tissues with OM causes a dose-dependent increase in cardiac function, reversing the mutation-induced contractile defect. Taken together, our study demonstrates how mechanistic molecular studies can be harnessed to identify precision medicine therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call