Abstract

Recent advancement of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technologies has opened the door to next-generation modeling of human cardiac biology and disease. Not only does this alleviate the need for human primary tissue and compensate for the well documented deficiencies of rodent models for cardiovascular disease, but these technologies may lead to the identification of better candidates for clinical development. Unfortunately, most current 2D hiPSC-CM models lack the biochemical, mechanical, and electrical feedback that cardiomyocytes endure in a multi-cellular aligned tissue, which limits their translatability into clinical settings. To address this, we incorporated hiPSC-CMs modeling various genetic dilated cardiomyopathies (DCM) into 3D engineered heart tissues (EHTs). Here, we show these models develop distinguishable contractile defects recapitulating hallmarks of DCM when compared to biologically relevant controls. Moreover, this distinct phenotype is quantitative, reproducible, and demonstrates utility for drug discovery. As this innovative technology continues to develop, EHTs are on the forefront of emerging biomimetic assays that can be used to prevent drug attrition in the late stages of drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.