Abstract

Abstract Background: Treatment of BC is conventionally based on the presence/absence of ER/PR or HER2 status of the primary tumor. We have enriched this approach by including major genetic and proteomic changes in tumors of individual patients in order to develop a better treatment-rationale based on an alteration driven signaling algorithm. Methods: Genomic and proteomic data from 75 BC patients seen in our center were retrospectively analyzed. Patients were re-biopsied after consultation and samples were characterized (IHC for ER, PR, and HER2; FFPE samples for genomic [Foundation Medicine] and proteomic analyses [Theranostics]). In vivo studies were conducted using xenograft models. Results: Although alterations of PIK3CA, PIK3R1, AKT, PTEN, MDM2, MDM4, TSC1, mTOR and RICTOR are most frequently observed in our patients, there is a distinct pattern of alteration(s) of the PI3K pathway genes in different subtypes of BC. A total of 76 genes were altered in 48 ER+BC patients. In 79% of ER+BC patients the above mentioned PI3K pathway genes were altered. Analyzing the set of alterations of genes in individual patients, we observed that within these 48 patients 25% exhibited alterations in more than one node of the pathway; the most common combination (alterations) being the amplification/mutation of PIK3CA with the amplification of MDM2/4 genes. The percentage of patients belonging to HER2+ & TNBC exhibiting similar alterations in the PI3K pathway genes were significantly lower (∼40%). Our previous in vivo studies demonstrated that GDC-0980 and BEZ235 enhanced the antitumor activity of ABT888 plus carboplatin in TNBC or trastuzumab in HER2+ BC respectively and blocked the growth of established xenograft tumors by 80% to 90% with a concomitant decrease in tumor Ki67, pS6RP and CD31. Mechanistically the action of the PI3K-mTOR pathway targeted drug(s) was tested using cell line based models of BC subtypes pertaining to their respective genomic alterations. A combination of a pan-PI3K pathway inhibitor, GDC-0941 or isoform-specific inhibitors along with AI, trastuzumab, or HRD inhibitors (PARP) blocked proliferative signals and enhanced apoptosis (cleaved caspase3) in ER+/PIK3CA mutated, HER2+/PIK3CA mutated or PTEN-null TNBC cells respectively as demonstrated by WB, flow cytometry, cell proliferation, viability and cytotoxicity assays. A recent study demonstrated that exposure to chemotherapy induced a phenotypic shift or cell state transition towards a transient CD44Hi/CD24Hi chemotherapy-tolerant state, leading to the activation of downstream non-receptor tyrosine kinase signaling towards an emerging adaptive resistance (Goldman et al., Nature Comm. 2015). Hence drug combination(s) are being tested for their effect on CD44/CD24 expression levels, results of which will be presented in the meeting. Conclusion: Plotting the genetic alterations from the patient on the signaling landscape will be useful in cracking the code leading to improved treatment options. Patient specific in-depth plotting of genetic alterations of the PI3K-mTOR pathway and the relevance of these alterations in the context of (1) mechanisms of PI3K-mTOR pathway targeted drugs and (2) cell signaling are critical in determining choice of drugs in BC subtypes. Citation Format: Carlson JH, Krie A, Williams C, Sun Y, Lin X, Williams K, Klein J, Friedman L, De P, Dey N, Leyland-Jones B. Navigating genomic landscape to find a PI3K-signaling algorithm for a rational combinatin in precision medicine. [abstract]. In: Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr P4-08-04.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call