Abstract
Abstract During the COVID-19 pandemics we have all witnessed the clinical importance of mRNA as current vaccines and future therapeutics. mRNA therapies have a potential to revolutionize cancer treatment. Delivery of mRNA requires lipid nanoparticles (LNP) to protect the cargo from degradation. mRNA has a negative charge and depends on positively charged lipids to be encapsulated in LNP. These lipids can be either ionizable at certain pH or constantly cationic. Even though previous studies had evaluated the formulation properties of ionizable and cationic LNP systems, there is the need to understand their specificity in terms of mRNA delivery and protein expression in breast cancer tumor microenvironment. The objective of this work was to assess the kinetics of LNP cellular uptake and mRNA expression inv breast cancer (BC) cells and fibroblasts, the most frequent cell type in the tumor microenvironment cells, while studying the mechanisms involved in differential behaviors of LNP formulated with cationic and ionizable lipids. To achieve this goal mRNA-LNP containing ionizable lipids (LNP-A) and cationic lipids (LNP-B) were designed and formulated using Nanoassemblr® Benchtop microfluidics mixer (Precision NanoSystems). mRNA-LNP were characterized for size, zeta potential using dynamic light scattering (DLS) and mRNA encapsulation efficiency using RiboGreen assay. LNP were tagged with rhodamine lipid to investigate the uptake kinetic and a reporter GFP mRNA to evaluate mRNA expression in murine 4T1 and human MCF7, MDA-231, SUM-159 and T-47D breast cancer cells and BJ fibroblasts. Live fluorescence microscopy imaging, IncuCyte S3®, was used to determine the LNP uptake and GFP mRNA expression. In vitro biocompatibility was assessed with WST-1 assay. Additionally, expression of mRNA delivered from LNP in tumor microenvironment was evaluated in vivo in a syngeneic 4T1 breast cancer model using mRNA luciferase and IVIS imaging. mRNA-LNPs possessed an average diameter of 77 - 107 nm, narrow size distribution, neutral zeta potential and high mRNA encapsulation efficiency (>94%). Our results demonstrated that mRNA expression was higher in breast cancer cells when delivered from LNP-A formulation and in BJ fibroblasts when delivered from LNP-B. LNP-A, the ionizable LNP, was tested in the breast cancer cells to confirm the efficacy of the delivery. The highest transfection efficacy, from high to low, T-47D, MCF7, SUM-159, 4T1 and MDA-231.We have further investigated the cellular uptake mechanisms of LNP using uptake pathway inhibitors for caveolae endocytosis, clathrin endocytosis, and phagocytosis. Our data confirm that there are differences in mechanisms that govern the uptake of mRNA LNP in breast cancer cells and fibroblasts. Clathrin-mediated endocytosis was active in 4T1 breast cancer cells for ionizable and cationic LNP. Interestingly, despite in vitro differences in uptake and mRNA expression, in vivo results show that both formulations efficiently delivered luciferase-mRNA in the tumor microenvironment. Histology results demonstrated similar luciferase expression for both LNP in tumors. Additionally, we were able to confirm the prominent presence of fibroblast and similar distribution in the 4T1 subcutaneous model which could explain the similar efficacy of cationic and ionizable LNP. Understanding uptake and mRNA expression of different LNP formulations in the tumor microenvironment can help in achieving the necessary protein expression for breast cancer therapies. Furthermore, determining the most efficient carrier in early stages may reduce the time required for clinical translation. Acknowledgement: This research was supported in part by CPRIT Core for RNA Therapeutics and Research. Citation Format: Karem A. Court, Anjana Tiwari, Eric Chau, John Cooke, Biana Godin. mRNA expression and delivery efficacy of lipid nanoparticles in the cells breast tumor microenvironment: in vitro and in vivo evaluation [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P4-07-50.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.