Abstract
Abstract Fifty percent of all triple negative breast cancer (TNBC) patients harbor significant residual tumor burden following treatment with standard neoadjuvant chemotherapy (NACT), resulting in poor prognosis. Recent studies in TNBC have revealed extensive intra-tumoral heterogeneity at the time of diagnosis and throughout disease progression, but the relative contributions of these heterogeneous populations of tumor cells to chemoresistance are not well understood. The primary tumor, dermal metastasis, and germline reference were obtained from a patient with untreated metastatic TNBC. Tumor cells were engrafted into the humanized mammary fat pads of NOD/SCID mice to establish PDX models of the primary (PIM001-P) and metastatic (PIM001-M) tumors. RNA sequencing and whole-exome sequencing (WES), performed on the patient's primary and metastatic tumors and the first- and third- passage PDX models revealed transcriptomic profiles and subclonal heterogeneity of the patient's tumors were recapitulated in the PDX models. Treatment of mice engrafted with PIM001-P tumors with NACT (Adriamycin plus cyclophosphamide, AC) resulted in partial response, the magnitude of which was diminished in mice bearing PIM001-M tumors. Tumor subclones were tracked during chemotherapy treatment in mice engrafted with PIM001-P tumors using lentiviral non-targeting DNA barcodes. Residual tumors maintained the clonal architecture of untreated tumors, and deep WES revealed stable maintenance of somatic mutant allele frequencies throughout treatment. Therefore, selection of pre-existing resistant clones did not lead to AC resistance in this model. Interestingly, only 25% of residual tumor clones contributed to primary relapse once treatment was halted, suggesting only a subpopulation of tumor cells was able to reconstitute the tumor. RNA sequencing and reverse phase protein array revealed that while vehicle-treated and regrown tumors were highly similar, residual tumors harbored a unique profile characterized by numerous significant alterations in RNA and protein levels. Together, these results suggest that residual tumors enter into a transient drug-resistant state that is reversible. Residual tumors were enriched for alterations in pathways such as metabolism, extracellular matrix remodeling, and cell-cell communication. Pharmacologic targeting of the residual tumor state with an inhibitor of mitochondrial oxidative phosphorylation led to significant inhibition of tumor regrowth following AC treatment. Additional vulnerabilities identified in residual tumors are being targeted therapeutically with the goal of eradicating residual tumor cells. Citation Format: Echeverria GV, Seth S, Ge Z, Sun Y, DiFrancesco E, Lau R, Marszalek J, Moulder S, Symmans F, Heffernan TP, Chang JT, Piwnica-Worms H. Characterizing and targeting chemoresistant subclones in patient-derived xenograft models of triple negative breast cancer [abstract]. In: Proceedings of the 2017 San Antonio Breast Cancer Symposium; 2017 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2018;78(4 Suppl):Abstract nr P4-03-02.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.