Abstract

Introduction: It is well understood that the occurrence, progress, and treatment of heart failure, which is a leading cause of death worldwide, is sex-specific. Over the past decade, the majority of efforts in myocardial regeneration have been centered on cell-based cardiac repair. A promising cell source for these efforts is patient-specific human cardiomyocytes (CMs) differentiated from human inducible pluripotent stem cells (hiPSCs). However, successful use of hiPSC-CMs faces a major limitation, the poor engraftment and electromechanical coupling of transplanted cells with the host myocardial tissue. Magnetic nanoparticles (NPs) demonstrate great potential to address this challenge for treating heart failure via cell therapies. In particular, superparamagnetic iron oxide NPs (SPIONs) have been used to label hiPSC-CMs and, with the aid of external magnetic field, improve their engraftment and electromechanical coupling in the heart tissue. However, the critical role of cell sex in the uptake and labeling efficacy of NPs has not been evaluated. Hypothesis: Significant differences in the molecular and structural (e.g., actin structures and distribution) characteristics of male and female hiPSC-CMs affect their labeling efficacy with SPIONs. Methods and Results: To test our hypothesis, we first performed RNA-Seq analysis on three male and three female (healthy) hiPSC-CM lines. The normalized outcomes were analyzed by edgeR package. We next calculated gene-expression differential between male and female CMs. The results revealed 58 genes with significant differences between the male and female cells (p-value < 0.01). The highest observed sex-specific variation in genes was related to tophit gene (MEG3: logFC = 7.32, P-value = 5.63e -06 ), which is the maternally expressed imprinted gene with a great role in cardiac angiogenesis. Among the identified genes, a number of those were related to the cellular cytoskeletal structures including actin. We probed possible structural differences between actin filaments organization and distribution of male and female hiPSC-CMs using the stochastic optical reconstruction microscopy (STORM) technique. The results demonstrated substantial differences in organization, distribution, and morphology of actin filaments between male and female CMs. Incubation of SPIONs with male and female hiPSC-CMs revealed higher uptake of NPs (~ 3 folds) in female cells as compared to the male cells. The significant differences in the uptake of SPIONs by male vs. female cells could be attributed to the distinct organization, distribution, and morphology of actin in male vs. female cells. Conclusions: Our results indicate that male and female hiPSCs-CMs respond differently to the labeling SPIONs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call