Abstract

The hypothalamic paraventricular nucleus (PVN) is one of the key central nuclei to play an important role in regulating arterial blood pressure (ABP) of salt-sensitive hypertension (SSH). However, the detailed molecular mechanism(s) whereby the PVN increases ABP are not well understood. Here, we tested the hypothesis that high salt (HS) loading increases expression of iNOS in the PVN which contributes to SSH. Six-week-old male Dahl salt sensitive (Dahl S) rats and age matched Sprague Dawley (SD) rats were fed either a HS (4% NaCI) or a normal salt (NS, 0.4% NaCl) diet (n=4~7/group). Mean arterial pressure (MAP) was measured via tail cuff method. Five weeks following diet treatment, HS diet induced hypertension in Dahl S rats (HS: 153±9; vs. NS: 122±2 mmHg, P<0.05), but not in SD rats (HS: 107±3; vs. NS: 107±2 mmHg). Rats were then euthanized and PVN tissues were punched out for real time PCR. The HS diet induced dramatic increases in mRNA levels of iNOS (25-fold), and Fra1 (3.6-fold), a chronic neuronal activation marker, in Dahl S rat but not in SD rats. Next, we investigated the effect of intracerebroventricular (ICV) administration of hypertonic saline on PVN iNOS and Fra1 expression in SD rats. Anesthetized adult male SD rats received ICV infusion of isotonic NaCI (0.15 M, 2μl, as control) or hypertonic NaCI (2M, 2μl) (n=7~8/group). Three hours following ICV infusion, rats were euthanized and PVN mRNA levels of iNOS and Fra1 were assayed. ICV hypertonic saline increased mRNA levels of iNOS (9.5-fold) and Fra1 (4.1-fold). We further tested whether these increases in iNOS and Fra1 expression occurred in neurons. Incubation of hypertonic saline (10 mM NaCI) for 3 hours increased iNOS (6-fold) and Fra1 (2.8-fold) mRNA levels in neuronal cultures from the hypothalamus containing the PVN. Finally, we tested whether increased iNOS activity contributes to ABP elevation in Dahl SSH. In anaesthetized Dahl S rats, bilateral PVN microinjection of the iNOS inhibitor, aminoguanidine (250 pmol) significantly decreased MAP in HS treated animals compared to rats with a NS diet (HS: -13±3; vs. NS: -2±2 mmHg, P<0.05) (n=5/group). These observations suggest that HS intake increases iNOS expression in PVN neurons, which may contribute to the central neural mechanism of Dahl SSH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call