Abstract

Background: Myocardial fibrosis contributes significantly to heart failure (HF). Fibroblasts are among the predominant cell type in the heart and are primary drivers of fibrosis. To identify the kinases involved in fibrosis, we analyzed the kinome of mouse cardiac fibroblasts (CF) isolated from normal and failing hearts. This unbiased screening revealed the critical role of the GSK-3 family-centric pathways in fibrosis. Previously we have shown that among two isoforms of GSK3, CF-GSK3β acts as a negative regulator of fibrosis in the injured heart. However, the role of CF-GSK3α in the pathogenesis of cardiac diseases is completely unknown. Methods and Results: To define the role of CF-GSK3α in HF, we employed two novel fibroblast-specific KO mouse models. Specifically, GSK3α was deleted from fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or periostin- promoter-driven Cre recombinase. In both models, GSK3α deletion restricted pressure overload-induced cardiac fibrosis and preserved cardiac function. We examined the effect of GSK3α deletion on myofibroblast transformation and pro-fibrotic TGFβ1-SMAD3 signaling in vitro . A significant reduction in cell migration, collagen gel contraction, and α-SMA expression in TGFβ1-treated KO CFs confirmed that GSK3α is required for myofibroblast transformation. Surprisingly, GSK3α deletion did not affect SMAD3 activation, indicating the pro-fibrotic role of GSK3α is SMAD3 independent. To further delineate the underlying mechanisms, proteins were isolated from CFs of WT and KO mice at 4 weeks post-injury, and kinome profiling was performed. The kinome analysis identified the downregulation of RAF family kinase activity in KO CFs. Moreover, mapping of significantly altered kinases against literature annotated interactions generated ERK-centric networks. Consistently, flow cytometric analysis of CFs confirmed significantly low levels of pERK in KO mice. Additionally, our in vitro studies demonstrated that GSK3α deletion prevents TGFβ1-induced ERK activation. Interestingly, IL-11, a pro-fibrotic downstream effector of TGFβ1, was remarkably reduced in KO CFs and ERK inhibition further decreased IL-11 expression. Taken together, herein, we discovered the GSK3α-ERK-IL-11 signaling as a critical pro-fibrotic pathway in the heart. Strategies to inhibit this pro-fibrotic network could prevent adverse fibrosis and HF. Conclusion: CF-GSK3α plays a causal role in myocardial fibrosis that could be therapeutically targeted for future clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.