Abstract

Cardiac diastolic dysfunction (DD) and diastolic heart failure is increasing in concert with obesity and aging population in the United States. In obese and diabetic women, DD is more common than in their male counterparts. This disproportionate increase in DD in obese females may partly explain their loss of sex-related cardiovascular (CV) disease protection. Recent studies have suggested a role for endothelial sodium channel (ENaC) activation in promotion of endothelial stiffness and suppression of flow- (nitric oxide) mediated vasodilation. Moreover, increased mineralocorticoid receptor (MR) activation mediated endothelial stiffness is promoted, in part, by ENaC activation. In this regard, we have recently reported increased plasma aldosterone levels, aortic and cardiac stiffness, and cardiac and vascular MR expression in female mice fed a high fat and high fructose diet (western diet [WD]). This increase in CV stiffness was prevented by very low dose MR antagonism. Accordingly, we hypothesized that inhibition of MR-mediated ENaC activation by using a very low dose of the ENaC inhibitor, amiloride would prevent cardiac stiffening (DD) in WD-fed female mice. Four week old C57BL6/J mice were fed a WD containing high fat (46%), sucrose (17.5%), and high fructose corn syrup (17.5%) with or without a very low dose of amiloride (1mg/kg/day) for 16 weeks. Amiloride significantly attenuated WD-induced impairment of cardiac relaxation in vivo as measured by high resolution magnetic resonance imaging (MRI) as well as cardiac interstitial fibrosis as measured by immunohistochemistry by picrosirius red staining. Moreover, amiloride prevented the development of DD in obese female mice without having effects on blood pressure. These observations support a role for ENaC activation in diet-induced cardiac stiffening (DD) in obese females.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.