Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor known to regulate metabolic and vascular function. Mutations in PPARγ result in hypertension, and synthetic agonists of PPARγ reduce blood pressure. Previously we found that mice expressing dominant-negative (DN) PPARγ driven by an endothelium-specific promoter (E-DN) exhibit vascular dysfunction. Preeclampsia (PE) is a hypertensive disorder of pregnancy which carries cardiovascular and metabolic risk to offspring. PE is associated with vascular dysfunction, and we therefore hypothesized a role for endothelial PPARγ in the pathogenesis of PE and its sequelae. C57BL/6J dams were bred with E-DN sires, and symptoms of PE were induced by the infusion of vasopressin (AVP, 24 ng/hr sc) throughout gestation. We assessed phenotypes of PE first in pregnant dams, and then in offspring as adults. Compared to saline infusion (SAL), AVP elevated maternal blood pressure (SBP: 116±3 vs 107±3, p<0.05) at gestational day (GD) 14-15 and urine protein (70±6 vs 27±4 mg/mL, p<0.05) at GD17. Offspring from these pregnancies were phenotyped in adulthood to assess cardiovascular and metabolic function. Data were stratified to sex, genotype, and maternal exposure to AVP vs SAL. Systolic blood pressure in adult male and female offspring born to AVP-infused pregnancies was similar to mice born to SAL pregnancies. At 20 weeks of age, vasorelaxation responses to acetylcholine were not different in offspring exposed to PE compared to mice born from SAL pregnancies. However, urinary protein levels were significantly elevated in both male (58±13 vs 32±5 mg/ml, p<0.05) and female (38±3 vs 25±2 mg/ml, p<0.05) adult E-DN born to PE pregnancies compared to E-DN controls born from SAL pregnancies. Male E-DN offspring exposed to PE showed significantly increased gain in body weight over time compared to male NT exposed to PE (ΔBW: 20±8 vs 14±2 g). These data highlight the impact of in utero exposure to elevated AVP upon cardiovascular function in the mother, and the adverse renal and metabolic consequences of PE upon offspring. Moreover, our data suggests that interference with endothelial PPARγ in pups born from PE pregnancies increases the risk for renal and metabolic dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call