Abstract

In hypertension, activation of NADPH oxidases (Noxs) is associated with oxidative stress and vascular dysfunction. The exact role of each isoform in hypertension-associated vascular injury is still unclear. We investigated the compartmentalization of Noxs in VSMC from resistance arteries of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Expression of Nox1 and Nox4 was increased in SHR cells (96.6±28.7% and 48.2±21.2% vs WKY, p<0.05), as well as basal ROS levels measured by chemiluminescence (110.2±26.4% vs WKY, p<0.05) and amplex red (105.2±33.2% vs WKY, p<0.05). Phosphorylation of unfolded protein response activators, PERK and IRE1α, and expression of ER chaperone BiP were elevated in SHR cells (p<0.05 vs WKY), indicating activation of ER stress response. Immunoblotting after organelle fractionation demonstrated that Noxs are expressed in an organelle-specific manner, with Nox1, 2 and 4 present in plasma membrane, ER and nucleus, but not in mitochondria. In SHR cells, NoxA1ds (Nox1 inhibitor, 10μM) and GKT136901 (Nox1/4 inhibitor, 10μM) decreased AngII-induced ROS levels (p<0.001 vs Ctl). Additionally, mito-tempol (mitochondrial-targeted antioxidant, 50nM) and 4-PBA (ER stress inhibitor, 1mM) decreased basal ROS levels in SHR cells (p<0.05 vs Ctl). Furthermore, oxidation of the antioxidant enzymes Peroxiredoxins (Prx) was increased in SHRSP compared to WKY (2.51±0.14 vs 0.56±0.07, p<0.001). One-dimensional isoelectric focusing revealed that cytosolic Prx2 and mitochondrial Prx3 were more oxidized in SHRSP than WKY cells. Using a biotin-tagged dimedone-based probe (DCP-Bio) we identified oxidation of ER stress proteins BiP and IRE1. To investigate the effect of protein oxidation in vascular function, vascular reactivity was evaluated in isolated mesenteric arteries. Inhibition of general oxidation (DTT 1mM; Emax: 111.7±33.1) and peroxiredoxin (Conoidin A 10nM; Emax: 116.0±7.3) reduces vascular contraction in response to noradrenalin in WKY rats (Emax: 166.6±30.2; p<0.05). These findings suggest an important role for Nox1/4 in redox-dependent organelle dysfunction and post-translational modification of proteins, processes that may play an important role in vascular dysfunction in hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call