Abstract

While obesity is a major cause for pregnancy complications including preeclampsia and fetal demise, it is not exactly clear the precise obesity-related metabolic factors that promote these adverse outcomes. Epidemiological studies have pointed toward hyperglycemia as one such factor. Therefore, we tested the hypothesis that hyperglycemic rats have hypertension and fetal demise during pregnancy. For this purpose, we utilized the type II diabetic model, the Goto-Kakizaki (GK) rat (N=16), compared to normoglycemic Wistar Hannover (WH) rats (N=9), which were maintained on Envigo 8640 standard chow. The GK rat allows for assessment of hyperglycemia on pregnancy without confounding obesity. Maternal fasting glucose levels were significantly greater (P<0.05) in GK (97±8 mg/dL) vs. WH (72±9 mg/dL) rats by gestational day 19. Body weight was lower (P<0.05) in GK (248±4 g) versus WH (289±4 g) pregnant rats, whereas perirenal fat (1.56±0.07 g vs. 1.38±0.07 g, P>0.05) and circulating levels of the adipokine, leptin (1.6±0.2 ng/mL vs. 2.2±0.3 ng/mL, P>0.05) were similar between GK and WH pregnant groups, respectively. Endothelial-dependent relaxation to acetylcholine (sensitivity as logEC50: -5.2±0.3 M vs -5.2±0.4 M) and endothelial-independent relaxation to the nitric oxide-donor sodium nitroprusside (logEC50: -7.2±0.2 M vs. -7.5±0.1 M) were similar (P>0.05) in uterine arteries isolated from GK and WH rats, respectively. It was then determined if reduced uterine perfusion pressure (RUPP)-induced placental ischemia, a significant contributor to the development of preeclampsia, promoted greater maternal hypertension in GK rats. RUPP was conducted on gestational day 14 and blood pressure assessed on day 19. RUPP produced hypertension to a similar extent (P>0.05) in GK (116±5 mmHg vs. Sham 102±5 mmHg) and WH (124±4 mmHg vs. Sham 100±2 mmHg) groups. Blood pressure was similar under Sham conditions. Fetal demise was already greater in Sham GK vs. Sham WH pregnant rats (% absorptions: 13±2 vs. 2±2, P<0.05) but increased similarly following RUPP in GK (61±11 %) and WH (65±5 %) pregnant rats. In conclusion, these data suggest that high glucose levels promote fetal demise during pregnancy but do not exaggerate the outcomes of placental ischemia-induced hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call