Abstract

Abstract Introduction: CD73, a cell surface enzyme, catalyzes the generation of adenosine from ATP and ADP in the tumor microenvironment along with CD39. Accumulated extracellular adenosine functions as immune-suppressor, and also binds to adenosine receptors which promotes angiogenesis and cell proliferation that results in accelerate cancer progression. However, the clinical significance and molecular function of CD73 expression in breast cancer remains unclear. Methods: Utilizing publicly available breast cancer cohorts of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), clinical significance as well as underlying mechanisms were investigated. Molecular experiments were carried out in MCF7 cells, ER-positive breast cancer cell line, to investigate the role of estrogen signaling on CD73/CD39 expression. Results: In treatment naïve TCGA cohort, CD73 expression level was significantly lower in ER-positive breast cancers compared to ER-negative tumors. Higher CD73 expression was associated with worse overall survival in whole cohort (p=0.021) and ER-positive tumors (p=0.003), but not in ER-negative tumors. Gene Set Enrichment Analysis revealed that estrogen response gene sets (Early; NES=-1.57, p=0.043, Late; NES=-1.61, p=0.021) were significantly enriched in CD73 low expressing ER-positive tumors, suggesting estrogen signaling may repress CD73 expression. To test this hypothesis, we analyzed the expression of CD73 and CD39 in MCF7 cells treated with estrogen, tamoxifen or both. Our data revealed that estrogen treatment suppressed CD73 and CD39 expression, whereas tamoxifen treatment enhanced expression of the genes. These findings suggest that CD73 and CD39 gene expression is suppressed by estrogen signaling, whereas binding of ER antagonists such as tamoxifen can remove the repressive effect on gene expression. On the other hand, epithelial-mesenchymal transition (EMT) (Normalized Enrichment Score; NES=2.41, p<0.001) and angiogenesis (NES=2.33, p<0.001) gene sets were significantly enriched in CD73 high expressing ER-positive tumors. CIBERSORT, which is an algorithm to estimate infiltrating immune cells by gene expression, demonstrated that CD73 high expressing ER-positive tumors have less infiltrating CD8-positive T cells, memory B cells and plasma cells, implying that CD73 high expressing tumors have immune suppressive environment, which is in agreement with the notion that CD73 high tumors are immunosuppressive. Finally, we found that CD73 expression was significantly elevated post-chemotherapy compared to tumors prior to the treatment (p=0.007), and CD73 high expression patients showed worse relapse-free survival in neoadjuvant chemotherapy patients cohort (p=0.003). Conclusion: Molecular studies revealed that CD73 expression is regulated by estrogen signaling. Increased expression of CD73 significantly correlates with worse outcomes in ER-positive breast cancer patients. This may be due to upregulated pro-metastatic gene signatures such as EMT and angiogenesis as well as less infiltration of anti-cancer immune cells by adenosine generated by CD73 in the tumor microenvironment. Our data reveals an intriguing mechanism which may be responsible for recurrence and metastasis of ER-positive breast cancer. Citation Format: Katsuta E, Anand V, Yan L, Dasgupta S, Takabe K. CD73 expression regulated by estrogen signaling associates with poor prognosis in estrogen receptor (ER)-positive breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P2-02-04.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call