Abstract

Abstract Background: MiRNAs are non-coding RNA molecules and its function is the regulation of gene expression. In cancer, the deregulation of miRNAs allows them to act as oncogenes or tumor suppressors. From an analysis of the expression of miRNAs in breast cancer (BC) in The Cancer Genome Atlas (TCGA), it was identified that miR-1307-3p is significantly overexpressed in the tumor tissue compared to healthy tissue from patients. So far, in BC, it has only been reported that this miRNA inhibits SMYD4 and that it is involved in resistance to cisplatin through its effect on Mdm4. In this project we propose to identify the role of miR-1307-3p in proliferation, migration, invasion, angiogenesis, and possible targets involved in these processes in BC cells. Methods: RT-qPCR was used to evaluate basal levels of miR-1307-3p in the BC cell lines MDA-MB-231 and MCF-7, and the human epithelial breast MCF-10A cells. Later, we determined the effect of miR-1307-3p on proliferation, migration, and invasion in MDA-MB-231 and MCF-7, and angiogenesis in the HUVEC endothelial cells. All assays were carried out using the miR-1307-3p inhibitor. Finally, nine miRNA-target prediction databases were analyzed to identify potential miR-1307-3p target genes, and their expression was analyzed by RT-qPCR in a designed 384-well plate. Results: We found that miR-1307-3p is overexpressed in MDA-MB-231 and MCF-7, compared to MCF-10A cells. We also identified that transfection with the miR-1307-3p inhibitor causes a significant decrease in the processes of proliferation, migration, invasion, and angiogenesis, when compared with untreated or negative control transfected cells. For its part, prediction databases analysis allowed us to identify 19 potential targets of miR-1307-3p. Finally, by RT-qPCR, the overexpression of 3 and the downregulation of 2 genes were confirmed. Conclusions: MiR-1307-3p is overexpressed in BC cells. Furthermore, miR-1307-3p induces the processes of proliferation, migration and invasion in BC cells, and angiogenesis in HUVEC cells. These observations suggest that miR-1307-3p can acts as an onco-miRNA. In addition, the expression of 5 of the predicted target genes were altered by miR-1307-3p inhibitor. Further analysis to validate the implication of this miR-1307-3p targets are needed to understand its importance in BC. Citation Format: José Roberto Estupiñan Jimenez, Valeria Villarreal-García, Ricardo Noriega, Recep Bayraktar, Diana Reséndez-Pérez, Cristina Rodríguez-Padilla, José Manuel Vázquez-Guillén, Fermín Mar-Aguilar, Gabriel Lopez-Berestein, Pablo E. Vivas-Mejía, Vianey Gonzalez-Villasana. Functional effect of miR-1307-3p on breast cancer progression [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P2-22-04.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.