Abstract

Protease-activated receptors (PARs) have been shown to regulate endothelial nitric oxide synthase (eNOS) through the activation of specific sites on the enzyme. It has been established that phosphorylation of eNOS-Ser-1177 leads to the production of the potent vasodilator nitric oxide (NO), and is associated with PAR-2 activation; while phosphorylation of eNOS-Thr-495 decreases NO production, and is coupled to PAR-1 activation. In this study, we demonstrate a differential regulation of the eNOS/NO pathway by the PARs using primary adult human coronary artery endothelial cells (HCAEC). Thrombin and the PAR-1 activating peptide, TFLLR, which are known to phosphorylate eNOS-Thr-495 in bovine and human umbilical vein endothelial cells, phosphorylated eNOS-Ser-1177 in HCAECs, and increased NO production. The PAR-1 responses were blocked using SCH-79797, a PAR-1 inhibitor, and L-NAME was used to inhibit NO production. A PAR-2 specific ligand, SLIGRL, which has been shown to phosphorylate eNOS-Ser-1177 in bovine and human umbilical vein endothelial cells, primarily regulated eNOS-Thr-495 phosphorylation and suppressed NO production in the HCAECs. PAR-3, known for its non-signaling potential, was activated by TFRGAP, a PAR-3 mimicking peptide, and only induced phosphorylation of eNOS-Thr-495 with no effect on NO production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was calcium-dependent using the calcium chelator, BAPTA, and eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632. These data suggest a vascular bed specific differential coupling of PARs to the signaling pathways that regulate eNOS and NO production that may be responsible for the modulation of endothelial function associated with cardiovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call