Abstract

Chronic interstitial inflammation and renal infiltration of activated immune cells play an integral role in hypertension. Lymphatic vessels attenuate inflammation by trafficking activated immune cells and excess fluid from the interstitial space to lymph nodes. Previously, our laboratory demonstrated that genetically inducing renal lymphangiogenesis could treat hypertension in three different mouse models. In an effort to translate these findings into a clinical treatment, we hypothesized that a targeted nanoparticle could deliver the pro-lymphangiogenic factor VEGF-C156S to the kidney, induce lymphangiogenesis, and lower blood pressure in hypertensive mice. A micellar nanoparticle was developed with the capacity to deliver protein to the kidney, as demonstrated through delivery trials. This nanoparticle was loaded with VEGF-C156S and injected into mice with LNAME-induced hypertension (LHTN) or angiotensin II-induced hypertension (AIIHTN) via tail vein every 3 days. Compared to hypertensive mice injected with VEGF-C156S only (no nanoparticle) every 3 days, nanoparticle-treated mice exhibited a significantly lower systolic blood pressure (SBP) after 4 injections (LHTN SBP: 160±5 vs. 120±3 mmHg, p<0.001; AIIHTN SBP: 150±8 vs. 126±6 mmHg, p=0.03). Immunolabeled kidney sections from nanoparticle-treated LHTN mice showed a significant increase in podoplanin+ pixels, corresponding to an increase in lymphatic vessel density (p<0.01). A 5-fold increase in renal gene expression of podoplanin in nanoparticle-treated LHTN mice further supported this finding (p=0.01). Flow cytometric analysis of the nanoparticle-treated LHTN mice showed decreased renal CD45+F4/80+CD11c- cells, while AIIHTN mice revealed decreased levels of renal CD45+CD3e+, CD45+CD4+CD8-, and CD45+F4/80+CD11c+ cells (p<0.01, p=0.03, and p<0.001, respectively) when compared to their respective hypertensive groups. These data support our previous findings that expanding the renal lymphatic vasculature can treat existing hypertension by reducing renal immune cells. The results of this study may provide clinicians with a renal lymphatic-targeted therapeutic for treating hypertensive patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.