Abstract

VEGF/VEGFR inhibitors, used as anti-angiogenic drugs to treat cancer, induce severe hypertension. Molecular mechanisms whereby VEGF inhibitors cause hypertension are unclear, but nitric oxide (NO) and oxidative stress may be involved. We questioned whether reactive oxygen species (ROS) and Ang II, important regulators of vascular function in hypertension, also play a role in VEGF inhibitor-induced vascular dysfunction. Human microvascular endothelial cells (HMECs) were stimulated with vatalanib (VAT-VEGFR inhibitor) and gefitinib (GEF-EGFR inhibitor) in the absence/presence of Ang II. Activation of eNOS and MAPKs were assessed by immunoblotting. Antioxidant enzyme mRNA was analysed by qPCR. Microparticle levels were measured by flow cytometry. Endothelial microparticles, biomarkers of endothelial damage, tend to increase in subjects treated with VEGFR inhibitors. Phosphorylation of eNOS activation site (Ser1177) (28.3% ± 7.1) was decreased by VAT, while no changes were observed after exposure of HMECs to GEF (p<0.05). VAT decreased mRNA expression of Nox4 (0.5 ± 0.2) and H2O2-regulating antioxidants enzymes such as catalase (0.4 ± 0.1) and glutathione peroxidase (0.4 ± 0.1), while increased mRNA levels of Nox5 (3.35±1.1) (p<0.05 vs. veh). Ang II stimulation increased eNOS (171.2% ± 17.4) and ERK1/2 (177.5% ± 38.5) activation (p<0.05); all effects were blocked only by GEF. Inhibition of VEGFR also blocked Ang II effects on SOD1 (1.33 ± 0.1), HO-1 (1.6 ± 0.3) and NQO1 (1.6 ± 0.3) mRNA levels (p<0.05). In addition, Ang II increased Nox4 mRNA expression through VEGFR-dependent mechanisms. VEGFR1/2 and AT2R, but not AT1R, were expressed in HMEC. Ang II effects on eNOS phosphorylation were inhibited by PD123319 (AT2R antagonist) but not by losartan (AT1R antagonist). In conclusion, our data identify novel mechanisms whereby AngII, possibly through AT2R-dependent VEGFR transactivation, regulates eNOS activation, MAPK signalling and H2O2-related antioxidant enzymes. In addition to changes in NO availability, VEGFR inhibition may interfere with the redox status of endothelial cells, leading to vascular dysfunction and hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.