Abstract

Mas and ET B receptors physically interact in endothelial cells (ECs) and are involved in the protective actions of angiotensin 1-7 (Ang (1-7)). We assessed whether the MAS/ET B R interaction plays a role in EC signalling and whether strategies to enhance MAS/ET B R association influence vascular responses. Human ECs were stimulated with Ang (1-7) (10 -7 M) in the presence/absence of A779 (Mas receptor antagonist, 10 -5 M) and BQ788 (ET B R antagonist, 10 -5 M). Protein expression and signalling activation were assessed by immunoblotting. NO production was evaluated by DAF-FM fluorescence and ROS production by chemiluminescence (superoxide anion) or amplex red (hydrogen peroxide (H 2 O 2 )). mRNA expression was assessed by qPCR. Endothelial function was assessed in mouse intact arteries by myography. Ang (1-7), through Mas and ET B R induced phosphorylation of eNOS (35%); followed by an increase in NO production (2.0 fold) (p<0.05 vs ctl). High throughput screening of protein:protein interaction compounds in an in-house library identified 23 potential enhancers of the MAS/ET B R interaction. Fluorescence polarization assays were used to further select the most potent enhancers and define their working concentration for testing in ECs (Enh1-4: 10 -5 M). Enh4 increased superoxide anion (55.6±26.3% vs ctl, p<0.05) and H 2 O 2 production (54.7±11.1% vs ctl, p<0.05), while Enh3 increased H 2 O 2 generation (48.1±15.4% vs ctl, p<0.05) in ECs. Moreover, Enh4 increased Nrf2 (3.0 fold), Sod1 (2.0 fold) and Nqo1 (3.1 fold) mRNA expression (p<0.05 vs ctl). Enh3 and Enh4 increased NO production (Enh3: 21.2±7.4%; Enh4: 23.6±8.2% vs veh, p<0.05) in ECs. Acetylcholine (Ach) curves were performed to assess endothelium-dependent relaxation in the absence and presence of enhancers. Enh4 increased ACh-induced relaxation (Emax%: 96.7±4.6 vs ctl: 70.4±3.3, p<0.05), while other enhancers did not improve endothelial function. Taken together, increasing MAS/ET B R interaction with specific enhancers augments protective signalling in ECs and promotes endothelial-dependent vasorelaxation, particularly with Enh4. In conclusion, enhancing interactions between MasR and ET B R may be a new vasoprotective strategy to improve vascular function in cardiovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call