Abstract

Cardiac function is highly reliant on mitochondrial oxidative metabolism and fitness. The circadian clock is critically linked to vital physiological process including mitochondrial fission, fusion and quality control mechanisms. However, little is known of how the circadian clock regulates these vital processes in the heart. Herein, we identified a putative circadian Clock - mitochondrial interactome that gates an adaptive stress response for cell viability during myocardial ischemia reperfusion (I-R) injury. We show that Clock transcriptionally coordinates expression of mitochondrial dynamic fusion and fission, bioenergetic and quality control proteins in cardiac myocytes. Transcriptome and gene ontology mapping revealed Clock defective hearts subjected to I-R exhibited major transcriptional deficits in several key survival processes including mitochondrial dynamics, bioenergetics and autophagy that were reduced further following I-R. Gain of function of Clock activity re-established gene transcription of mitochondrial respiratory complex activity, quality control mechanisms and cell viability. Collectively, our data show that mitochondrial fitness and cell survival is mutually dependent upon and obligatorily linked to transcription of the circadian Clock gene in cardiac myocytes. Our data suggest the functional loss of Clock activity predisposes cardiac myocytes to metabolic catastrophe. Hence, therapeutic strategies designed to preserve circadian clock activity in the hearts may prove beneficial in reducing morbidity and mortality following ischemia -related pathologies such as myocardial infarction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call