Abstract
Cavitation in rubber-like materials describes sudden void growth of an initially voided material under hydrostatic tension until the material fails. To study the cavitation effect numerically, classical cavitation criteria are coupled with a continuum damage formulation of a Neo-Hookean material. A cavitation criterion defines a failure surface in threedimensional stress or strain space, which represents the onset of excessive void growth and therefore the strong degradation of the bulk modulus. To account for this special case of material softening, a novel continuum damage formulation at finite strains is presented, where the initially constant bulk modulus of a hyperelastic material is reduced after satisfying a cavitation criterion. Since this formulation leads to an abrupt damage initiation, additionally a continuously volumetric damage formulation is proposed and compared with it. Therefore, novel void growth criteria are developed, which describe the cavitation effect even under smallest volumetric strains. For numerical validation, a single element test is simulated under hydrostatic tension. Furthermore, pancake tests are numerically analysed. The results with regard on the chosen cavitation criterion and the abrupt/continuously damage formulation are compared with each other analysing TSSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.