Abstract

Abstract Background: Recent studies suggest that enhancer reprogramming underlies heterogeneity and disease progression in estrogen receptor-positive (ER+) BC. Cell-type/state specific transcription is governed by high-order assemblies of master transcription factors (TFs) and epigenetically defined regulatory regions including super-enhancers (SEs). We previously showed that aberrant activation of the pioneer TF FOXA1 promotes enhancer and transcriptional reprogramming in endocrine-resistant BC, involving the ER and the AP-1 FRA1 and c-JUN TFs. As SEs maintain a robust cell-type/state specific core transcriptional regulatory circuitry (CRC) in developmental and tumorigenic processes, we sought to identify key additional TFs in SE/FOXA1-driven CRCs in endocrine resistance, which could serve as attractive therapeutic targets. Methods: TF binding motif at the shared SEs (mapped by H3K27ac ChIP-seq) between MCF7-parental (P) cells with ectopic FOXA1 overexpression (OE) and the endogenous FOXA1-amplifed tamoxifen-resistant (TamR) cells was analyzed by HOMER. ER-bound SEs distinguishing TamR vs. P cells were defined by integrating the SEs with our prior ER ChIP-seq data (PMID 28507152). KLF4 motif within these ER-bound SEs was scanned using FIMO and linked to nearby genes by intersection with the previously defined promoter-tethered regions (PTRs) (PMID 24141950). Differential gene expression in MCF7-TamR cells upon KLF4 knockdown (KD) by 3 unique siRNAs was analyzed using limma from edgeR. The biological and clinical significance of the KLF4-dependent genes was analyzed using Gene Ontology and survival modeling with METABRIC and the ER+ metastatic BC cohort ( SABCS19-GS2-02 ). Cell migration was assessed by the wound-healing assay. Citation Format: Rachel Schiff. Oncogene signal transduction and antiestrogen resistance [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr MS1-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call