Abstract

Elevated renal afferent nerve activity (ARNA) or dysfunctional renal reflexes contributes to hypertension and chronic kidney disease. The transient receptor potential vanilloid type-1 (TRPV1) channel is expressed in renal sensory nerves, and intrarenal administration of the TRPV1 agonist capsaicin increases ARNA. Nonselective denervation of renal sensory nerves using high-concentration capsaicin reduces arterial blood pressure (ABP) in experimental models of hypertension. However, the role of TRPV1 channels in ARNA responses to chemo- and mechano-sensitive stimuli has not been directly tested. To test this hypothesis, we generated a novel TRPV1 rat knockout model (TRPV1 -/- ) using CRISPR/CAS9 to delete exon 3 . ARNA multifiber recordings were performed in male and female TRPV1 -/- and wild-type littermates (250-400g) after decerebration or Inactin anesthesia (data combined). Wild-type and TRPV1 -/- rats had no significant differences in baseline mean ABP (126±4 mmHg vs 138±5 mmHg, respectively; n=8-10) or heart rate (451±25 bpm vs 432±24 bpm, respectively; n=8-10). Baseline ARNA was not different between wild-type and TRPV1 -/- rats (16±3 Hz vs 28±6 Hz, respectively; n=8-10). Intrarenal artery infusion of the TRPV1 agonist capsaicin (0.1-10μM, 50μL per 15s) significantly increased ipsilateral ARNA in wild-type but not TRPV1 -/- rats (Δ discharge with 10μM: 65±3 Hz vs 6±1 Hz, respectively; n=5-7). As a second chemosensitive stimulus, intrarenal artery infusion of bradykinin (0.1-10μM, 50μL per 15s) produced similar increases in ipsilateral ARNA between wild-type and TRPV1 -/- rats (Δ discharge with 10μM: 52±6 Hz vs 73±18 Hz, respectively; n=5-6). Finally, elevated renal pelvic pressures (0-20mmHg; 30s) significantly increased ipsilateral ARNA in both wild-type and TRPV1 -/- rats; however, the ARNA response was significantly greater in TRPV1 -/- versus wild-type rats (Δ discharge with 20mmHg: 47±14 Hz versus 18±6 Hz, respectively; n=5-8). In conclusion, mechanosensitive and chemosensitive ARNA responses remain intact in TRPV1 -/- rats. The mechanisms responsible for renal sensory nerve activation remain unidentified and the impact of TRPV1 deletion in rat models of hypertension and kidney disease remains to be tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call