Abstract

Hypothesis and objective: We hypothesize that transplantation of decellularized cardiac extracellular matrix (dECM) lowers fibrosis and fibroblast differentiation. In this study we investigated collagen deposition and fibroblast differentiation in post-MI hearts and heart explants of various stiffness after dECM hydrogel treatments. The objectives are 1) determining if dECM derived from fetal and adult porcine hearts reduces fibrosis in injured hearts; and 2) identifying specific signaling pathways that regulate fibroblasts differentiation induced by extracellular proteins. Methods: Porcine dECM was injected immediately after ligating coronary artery in P1 mice. Histology was conducted on day 7 post-myocardial infarction (MI). A mice ventricle explant model was used to investigate the molecular mechanisms. Results: We observed that fetal dECM treatment lowered fibrosis and fibroblast differentiation in post-MI hearts (Fig.1). Fibroblast differentiation as indicated by α-smooth muscle actin expression in vimentin or platelet derived growth factor receptor α positive cells showed an inhibitory effect of fetal dECM on fibroblast differentiation. Using a heart explant model of modulated microenvironment stiffness, we demonstrated that increasing tissue stiffness stimulates fibroblast differentiation and collagen deposition. Fetal dECM treatment, however, inhibited fibroblast differentiation induced by increasing microenvironment stiffness. Transcriptome analysis revealed that two cytoskeleton-related genes, macrophage capping protein (CAPG) and leupaxin (LPXN), are modulated by dECM treatments. Using cytoskeleton polymerization modulators and siRNA, we demonstrated that fetal dECM lowers fibroblast differentiation through CAPG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call