Abstract

The GPCR kinase GRK2 is highly expressed the heart; importantly, during cardiac injury or heart failure (HF) both levels and activity of GRK2 increase. The role of GRK2 during HF is canonically studied upstream of β-adrenergic desensitization. However, GRK2 has a large interactome and noncanonical functions for this kinase are being uncovered. We have discovered that in the heart, GRK2 translocates to mitochondria ( mtGRK2 ) following injury and is associated with negative effects on cardiac metabolism. Thus, we have sought to identify the mechanism(s) by which GRK2 can regulate mitochondrial function. We hypothesize that mtGRK2 interacts with proteins which regulate bioenergetics and substrate utilization, and this never-before-described role may partially explain the altered mitochondrial phenotype seen following cardiac injury or HF. Stress-induced mitochondrial translocation of GRK2 was validated in neonatal rat ventricular myocytes, murine heart tissue and a cardiac-derived cell line. Consequently, the GRK2 interactome was mapped basally and under stress conditions in vitro, in vivo , and with tagged recombinant peptides. GRK2-interacting proteins were isolated via immunoprecipitation and analyzed via liquid chromatography-mass spectroscopy (LCMS). Proteomics analysis (IPA; Qiagen) identified mtGRK2 interacting proteins which were also involved in mitochondrial dysfunction. Excitingly, Complexes I, II, IV and V (ATP synthase) of the electron transport chain (ETC) were identified in the subset of mtGRK2-dysfunction partners. Several mtGRK2-ETC interactions were increased following stress, particularly those in Complex V. We further established that mtGRK2 phosphorylates some of the subunits of Complex V, particularly the ATP synthase barrel which is critical for ATP production in the heart. Specific amino acid residues on these subunits have been identified using PTM-LCMS and are currently being validated in a murine model of myocardial infarction. To support these data, we have also determined that alterations in either the levels or kinase activity of GRK2 appear to alter the enzymatic activity of Complex V in vitro , thus altering ATP production. In summary, the phosphorylation of the ATP synthesis machinery by mtGRK2 may be regulating some of the phenotypic effects of injured or failing hearts such as increased ROS production and reduced fatty acid metabolism. Research is ongoing in our lab to elucidate the novel role of GRK2 in regulating mitochondrial bioenergetics and cell death, thus uncovering an exciting, druggable novel target for rescuing cardiac function in patients with injured and/or failing hearts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.