Abstract

Extracellular vesicles (EVs) specifically exosomes are important in mediating intracellular communications, and are capable of transferring genetic information between cells. Exosomes are used as a drug delivery vehicle to carry cargo for targeted therapy and have emerged as one of the most promising candidate for treating cardiovascular diseases. Exosomes get packaged inside the cell, excise out to the extracellular environment, and deliver the cargo to the target cells. However, the precise mechanism of how exosomes handle the differential ionic environment and the physiological role of their ion channels is not determined. Given that potassium (K + ) ions has the largest gradient, we focused on identifying the presence and physiological relevance of K+ channels in exosomes. Using the in silico approach, several ion channel candidates were identified, the most prominent ion channel being large conductance Ca 2+ and voltage-activated potassium channel (BK). To record BK in exosomes, we incorporated planar bilayers and a novel electrophysiology approach called near field electrophysiology (NFE), as the canonical patch-clamp methods are not feasible due to the size of EVs. Our NFE indicates a presence of K + channels in intact exosomes and 45% of them are sensitive to IbTX. Since IbTX specifically blocks, BK channels, we estimated 2 functional channels (single-channel conductance of 300 pS with 50% open probability) in a single exosome. Plasma-derived exosomes from BK +/+ and BK -/- mice subjected to differential K + gradient indicated that functional BK channels exist in exosomes, and help in maintaining their structural integrity. Furthermore, plasma derived exosomes from BK +/+ mice showed cardioprotection from ischemia-reperfusion injury whereas exosomes from BK -/- mice did not. Thus, the presence of BK determines the packaging as well as cardioprotective function of exosomes. Overall, the study for the first time indicate a presence of functional ion channel (BK) in exosomes which plays a role in protecting cells and heart against ischemia and reperfusion injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call