Abstract

The epithelial Na + channel (ENaC) plays a key role in Na + transport in epithelial linings to include the lung, colon and kidney. In the distal kidney tubules, ENaC regulates Na + reabsorption and blood volume. Thus, dysfunctions in signaling pathways regulating ENaC activity are linked to hypertension or hypotension. Phosphatidylinositol 4,5-bisphosphate (PIP 2 ) is a target of the G protein coupled receptor P2Y2 pathway, and is necessary for the proper function of ENaC. This nonvoltage-gated trimeric channel is comprised of α, β, and γ subunits. We recently described two intracellular PIP 2 binding sites on the N termini of β-, and γ-ENaC, with moderate μM affinity. Here, we report the functional effects on ENaC containing a combination of mutations to those PIP 2 binding sites, by controlled depletion of PIP 2 . We used a CIBN/CRY2-5-ptase optogenetic dimerization system to deplete PIP 2 levels in HEK293 cells transiently expressing wild type (wt) ENaC or the mutant ENaC constructs. A fluorescent Na + indicator, was used to monitor ENaC activity by tracking the relative intracellular Na + levels. Upon optogenetic-controlled depletion of PIP 2 , Na + levels decreased in cells expressing wt ENaC. Mutations to the PIP 2 sites of ENaC were expected to have no change in Na + levels upon PIP 2 depletion due to the disruption of PIP 2 binding. As a control, mutations to non-PIP 2 binding sites were included, and were expected to have decreased Na + levels similar to wt ENaC. Interestingly, mutation of each independent PIP 2 site resulted in only a small decrease of intracellular Na + , compared to wt ENaC. However, mutations throughout the entire N-terminus of β-ENaC, including the PIP 2 binding site, resulted in a significant increase of Na + upon PIP 2 depletion. We performed patch clamp electrophysiology and found that the ENaC recordings corresponded to the Na + fluctuations. These data suggest that the residues surrounding the PIP 2 binding sites play a significant role in the affinity of PIP 2 for ENaC. The role of these other domains in PIP 2 binding is still under investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call