Abstract

Gene therapy is a promising approach for the treatment of cardiovascular disease. Current strategies for myocardial gene transfer include the use of adeno-associated virus (AAV) vectors. However, AAVs may not be ideal for gene therapy vectors owing to pre-existing AAV capsid immunity in the human population that may reduce transduction efficacy and hinder preclinical-to-clinical translation. Interestingly, recent studies suggest that exosome-mediated encapsulation may protect viruses from neutralizing antibodies (NAbs) against the capsid and promote viral infectivity. Here, we describe the ability of exosome-enveloped AAVs, i.e. exosomal AAVs (eAAVs), to evade NAbs and serve as a highly efficient gene delivery tool for cardiovascular therapeutics. We have developed a method to purifiy eAAVs from AAV-producing HEK-293T cells, and used electron/confocal microscopy, qPCR, immunoblotting, dynamic light scattering and interferometric imaging measurements to characterize eAAV morphology, contents and mechanism of action. We confirmed eAAVs represent vesicular fractions that exhibit common exosome phenotype, along with the presence of virus particles, and demonstrated that eAAV infectious entry potentially involves trafficking via endocytic compartments. Using flow cytometry, Langendorff perfusion system and bioluminescence imaging, we then evaluated efficiency of heart targeting for eAAV9/eAAV6 and standard AAV9/AAV6 encoding for mCherry or firefly luciferase in human cardiomyocytes in vitro and in mouse model in vivo . Regardless of the presence or absence of NAbs, we showed that eAAVs are more efficient in transduction in the same titer ranges as compared to standard AAVs. To test therapeutic efficacy, we intramyocardially injected eAAV9 or AAV9 vectors encoding for SERCA2a in NAb+ post-myocardial infarction mice and further evaluated cardiac function using echocardiography. Remarkably, eAAV9-SERCA2a outperformed standard AAVs significantly improving cardiac function in the presence of NAbs (%EF 55.14 ± 3.50 compared to 27.31 ± 1.63 at 6 weeks, respectively). In summary, delivery of AAVs protected by carrier exosomes (i.e. eAAVs) may retain the clinical benefits of AAVs while addressing one of its major challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call