Abstract

Background: Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels and transporters. When activated, the protein kinase-like ER kinase (PERK) arm of the unfolded protein response (UPR) reduces protein translation and abundance. We hypothesize that inhibition of PERK could prevent cardiac ion channel downregulation and reduce arrhythmic risk after myocardial infarct (MI). Methods: The MI mouse model was induced by a left anterior descending coronary artery ligation. Pharmacological inhibition of PERK was achieved with a specific inhibitor, GSK2606414. Genetic inhibition of PERK was achieved by cardiac-specific PERK knockout in C57BL/6J mice (PERKKO). Echocardiography, telemetry, and electrophysiological measurements were performed to monitor cardiac function and arrhythmias. Results: Three weeks after surgery, the wild type MI mice exhibited decreased ejection fraction (EF%), ventricular tachycardia (VT) and prolonged QTc intervals. The UPR effectors (phospho-PERK, phospho-IRE1, and ATF6N) were elevated significantly (1.7- to 5.9-fold) at protein levels, and all major cardiac ion channels showed decreased protein expression in MI hearts. MI cardiomyocytes showed decreased currents for all major channels (I Na , I CaL , I to , I K1 , and I Kur : 60±6%, 53±9%, 27±6%, 55±7%, and 40±7% of sham, respectively, P<0.05 vs. sham) with significantly prolonged action potential duration (APD 90 : 291±43 ms of MI vs. 100±12 ms of sham, P<0.05) and decreased maximum upstroke velocity (dV/dt max : 95±4 V/s of MI vs. 132±6 ms of sham, P<0.05) of the action potential phase 0. GSK treatment restored I Na and I to , shortened APD, and increased dV/dt max . PERKKO mice exhibited reduced electrical remodeling in response to MI with shortened QTc intervals, less VT episodes, and higher survival rates. Conclusion: PERK is activated during MI and contributes to arrhythmic risk by downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmic risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmic mechanism and maintaining ion channel levels is antiarrhythmic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.