Abstract

Abstract Introduction: Acquired resistance to ALK-tyrosine kinase inhibitors (ALK-TKIs) treatment, particularly target-off resistance, remains a clinical challenge for ALK-rearranged non-small cell lung cancer (NSCLC). To explore novel vulnerabilities of ALK TKI-resistant cancer cells, we focused on their distinct metabolic pathways for growth and survival. Experimental Design: To investigate metabolic pathways in resistance mechanisms, we generated ALK-TKIs -acquired-resistant in vitro/vivo models. We screened metabolite mechanisms using metabolite assay kit, Seahorse Extracellular Flux Analyzer, real-time PCR, western blot, RNA-seq in resistant models. Results: Through an integrated transcriptomic and metabolic assay screening approach, we identified the enhanced reliance on glutamine metabolism in target-off ALK-TKIs-resistant cells. Specifically, resistant cells were characterized by upregulation of glutaminase 1 (GLS1), a mitochondrial enzyme hydrolyzing glutamine into glutamate, simultaneously with downregulation of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this metabolic state intensively accelerates glutaminolysis and subsequent mitochondrial glutamine-derived aspartate synthesis, resulting in TKI resistance by reinforcing antioxidant capacity with increase of NADPH and glutathione. Mechanistically, GLS1 inhibition elicited a marked reduction of cell growth with increase of reactive oxygen species (ROS) in resistant cells, which was restored by supplementation of exogenous aspartate. The antitumor activity of GLS1 inhibition against resistant tumor cells was further validated in in vivo experiments, patient-derived xenograft (PDX) and EML4-ALK transgenic mice. More importantly, glutaminase inhibitor CB-839 enhanced the therapeutic efficacy of anti-PD-L1 treatment in immune checkpoint blockade (ICB)-resistant EML4-ALK transgenic mice. Conclusion: Our findings highlight a new metabolic vulnerability of ALK-TKIs resistant tumors and provide a rationale for targeting GLS1 as a potential treatment option to overcome ALK-TKIs resistance. Citation Format: You Won Lee, Hun Mi Choi, Seung Yeon Oh, Eun Ji Lee, Kyoung-Ho Pyo, Jae Hwan Kim, Youngseon Byeon, Seong Gu Heo, Sun Min Lim, Min Hee Hong, Chang Gon Kim, Hye Ryun Kim, Mi Ran Yun, Byoung Chul Cho. Targeting adaptive metabolic program as a novel treatment approach for TKIs-failed ALK-positive NSCLCs [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB544.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call