Abstract

Abstract Antibody-drug conjugates are effective in the treatment of HER2-amplified breast cancer and Hodgkin's lymphoma, but current ADC technologies have faced limitations expanding the addressable patient population and target space. Ado-trastuzumab emtansine (T-DM1) is an ADC with 3-4 cytotoxic drugs per antibody that was recently approved for HER2 IHC 3+ or HER2-amplified breast cancer. Even within this high HER2-expressing population, several studies have now shown greater T-DM1 benefit in patients with HER2 mRNA expression above the median. These data suggest the need for more potent anti-HER2 ADCs to maximize benefit for HER2 IHC 3+ or amplified patients, and to extend HER2 ADC therapy to low HER2-expressing patients (HER2 IHC 1+/2+). XMT-1522 is an anti-HER2 ADC that uses a novel, human anti-HER2 antibody optimized for cytotoxic payload delivery, and is non-competitive with trastuzumab or pertuzumab for HER2 binding. Each antibody is conjugated to ∼15 proprietary auristatin molecules using Fleximer, a biodegradable hydrophilic polymer. XMT-1522 shows nanomolar potency in cultured tumor cells with HER2 receptor densities as low as 10,000 per cell, and is typically 1-3 logs more potent than T-DM1 across a panel of 25 tumor cell lines. In mouse xenograft studies XMT-1522 has excellent pharmacokinetic properties and achieves complete tumor regressions at well-tolerated doses. In the high HER2-expressing N87 gastric cancer model (800,000 HER2 receptors/cell), complete regressions are achieved with a single 1 mg/kg dose of XMT-1522, while 10 mg/kg T-DM1 is required for comparable activity. In the same model, the XMT-1522/trastuzumab/pertuzumab triple combination results in tumor regressions where the same doses of XMT-1522 alone or the trastuzumab/pertuzumab doublet result in tumor stasis. In the low HER2-expressing JIMT-1 breast cancer (79,000 HER2/cell) and SNU5 gastric cancer (22,000 HER2/cell) models, complete regressions are achieved with single 1 mg/kg or 0.67 mg/kg doses of XMT-1522, respectively, while T-DM1 is inactive at doses ≥10 mg/kg. In non-human primates XMT-1522 demonstrates good stability of drug conjugate in plasma with t1/2 ∼5 days (comparable to antibody t1/2) and minimal exposure to free payload. Despite the high potency of XMT-1522 in low HER2 tumor models, there is no XMT-1522-related toxicity observed in critical HER2-expressing tissues including heart and lung. The preclinical data support testing XMT-1522 as a single agent in tumors with low HER2 expression where current HER2-directed therapies are not indicated. Furthermore, combination of XMT-1522 with trastuzumab and/or pertuzumab achieves efficient cytotoxic payload delivery while retaining the potential for full inhibition of HER2 signaling, which may be necessary to improve on current regimens in HER2-driven tumors. Citation Format: Donald A. Bergstrom, Natalya Bodyak, Alex Yurkovetskiy, Peter U. Park, Michael DeVit, Mao Yin, Laura Poling, Joshua D. Thomas, Dmitry Gumerov, Dongmei Xiao, Elena Ter-Ovanesyan, LiuLiang Qin, Alex Uttard, Alex Johnson, Timothy B. Lowinger. A novel, highly potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr LB-231. doi:10.1158/1538-7445.AM2015-LB-231

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call