Abstract

Abstract Standard tumor-infiltrating lymphocyte (TIL) therapy requires IL-2 administration to support TIL expansion and survival, but this cytokine is associated with T cell exhaustion and can result in severe toxicities that limit patient eligibility (1). To this end, we genetically engineered TIL to express membrane-bound IL-15 (mbIL15) under the control of Obsidian’s cytoDRIVE® technology (cytoTIL15࣪), which allows regulation of protein expression via a drug-responsive domain upon acetazolamide (ACZ) administration. IL-15 is a preferred cytokine over IL-2 to mediate TIL activation and expansion, because it does not result in CD8 T cell exhaustion or stimulate regulatory CD4 T cells, and enhances development of a memory T-cell phenotype. We have previously demonstrated IL-2-independent, 3-6-fold increased cytoTIL15 persistence in an antigen-independent setting relative to unengineered TIL therapy with IL-2 (uTIL) (2). Due to the challenge of generating autologous tumor/TIL-matched pairs and most importantly, to assess cytoTIL15 cell’s functional impact on anti-tumor growth across multiple donors, we developed an allogeneic patient-derived xenograft (PDX) model. To establish the model, different melanoma tumor digests were co-incubated in vitro with select HLA-A*02-matched, allogeneic melanoma TIL donors to assess their reactivity. Tumors were screened for expression of shared antigens, such as gp100 and MART1, and TIL donor TCRs were screened with tetramers. Once established, serially passaged tumor fragments were grown, measured, and randomized into groups to receive intravenous transfer of TIL (n=8/cohort). Mice receiving uTIL were treated with four saturating doses of recombinant IL-2, and mice receiving cytoTIL15 cells received either vehicle or oral 200 mg/kg ACZ daily for the entire study, without any IL-2. Three of four cytoTIL15 cell preparations from different donors dosed with ACZ achieved significant tumor growth inhibition compared to uTIL. Four mice developed complete responses as early as 17 days post cytoTIL15 cell transfer. The level of anti-tumor response was associated with increased frequency of MART1-reactive cytoTIL15 cells. On day 20 after TIL transfer, tumors and secondary lymphoid organs were collected (n=4/cohort). Tumors treated with cytoTIL15 cells + ACZ showed an 8-10-fold increased TIL infiltration compared to uTIL or cytoTIL15 cells + vehicle. Moreover, enhanced cytoTIL15 cell infiltration and anti-tumor activity was associated with increases in pro-inflammatory cytokines (e.g., IFNγ). Taken together, these data clearly demonstrate the superiority of cytoTIL15 cells over uTIL for controlling or eradicating melanoma tumor outgrowth and the utility of an allogeneic PDX model for comparative evaluation of tumor-antigen specific TIL reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call