Abstract

Abstract Introduction: Use of tumor antigen-specific T cell receptors (TCRs) to refocus T cell killing has shown tantalizing clinical efficacy; however, durable responses have been limited by poor T cell persistence and expansion in vivo. Also, MHC class I downregulation in tumors further reduces therapeutic efficacy. Therefore, we co-expressed in human T cells a small molecule dimerizer (rimiducid)-dependent “activation switch”, called inducible MyD88/CD40 (iMC), along with tumor-targeted TCRs to regulate T cell expansion and activation, while affecting upregulation of MHC class I on tumors. Methods: Human T cells were CD3/CD28-activated and transduced with αβTCR-encoding γ-retroviruses recognizing either the CT antigen, PRAME (HLA-A*02:01/SLLQHLIGL), or the B-cell-specific transcriptional co-activator, Bob1/OBF-1 (HLA-B*07:02/APAPTAVVL). Parallel “Go-TCR” vectors co-expressed iMC, comprising MyD88 and CD40 signaling domains along with rimiducid-binding FKBP12-V36. Proliferation, cytokine production and cytotoxicity of modified T cells was assessed using peptide-pulsed T2 cells (PRAME only) or against PRAME+/Bob1+, HLA-A2+ -B7+ U266 myeloma cells +/- 10 nM rimiducid. MHC class I induction was measured using transwell assays and flow cytometry. In vitro tumor killing was analyzed by T cell and tumor coculture assays at various effector to target ratios over a 7-day period. Finally, in vivo efficacy was determined using immune-deficient NSG mice engrafted i.v. with U266 cells and treated i.v. with 1×107 transduced T cells. iMC was activated in vivo by weekly i.p. rimiducid injections (1-5 mg/kg). Tumor size and T cell expansion was measured using in vivo BLI imaging and flow cytometry. Results: All vectors efficiently (∼85%) transduced activated T cells and showed antigen-specific IFN-γ production and cytotoxicity against peptide-pulsed T2 cells and/or PRAME+Bob1+ U266 cells. However, both iMC signaling and TCR ligation of PRAME peptide-pulsed T2 Cells were required for IL-2 production. Coculture assays with U266 cells showed that tumor elimination, IL-2 secretion and robust (∼ 50-fold) T cell proliferation (vs TCR signaling alone) was optimized with concurrent rimiducid-driven iMC activation in both “Go-PRAME” and “Go-Bob1” constructs. Further, iMC activation produced TCR-independent IFN-γ that increased (∼100-fold) MHC class I expression on tumor cells. In NSG mice engrafted with U266 tumors, iMC-PRAME TCR-modified T cells persisted for at least 81 days post-injection and prevented tumor growth, unlike other T cell groups. Importantly, weekly rimiducid injection dramatically expanded iMC-PRAME TCR-expressing T cell numbers by ∼1000-fold on day 81 post-injection vs T cells expressing only the PRAME TCR (p < 0.001). Summary: The novel rimiducid-regulated “Go” switch, iMC, greatly augments activation and expansion of TCR-engineered T cells while sensitizing tumors to T cells via cytokine-induced MHC class I upregulation. iMC-enhanced TCRs are prototypes of novel “Go-TCR” engineered T cell therapies that increase efficacy, safety and durability of adoptive T cell therapies. Citation Format: David M. Spencer, Tsvetelina P. Hoang, Aaron Foster, Tania Rodriguez, David Torres, An Lu, Jeannette Crisostomo, Lorenz Jahn, Mirjam H.M. Heemskerk. Go-TCR™: Inducible MyD88/CD40 (iMC) enhances proliferation and survival of tumor-specific TCR-modified T cells, increasing anti-tumor efficacy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-084.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call